Structural Parameters, Tight Bounds, and Approximation for (k, r)-Center

In $(k,r)$-Center we are given a (possibly edge-weighted) graph and are asked to select at most $k$ vertices (centers), so that all other vertices are at distance at most $r$ from a center. In this paper we provide a number of tight fine-grained bounds on the complexity of this problem with respect to various standard graph parameters. Specifically: - For any $r\ge 1$, we show an algorithm that solves the problem in $O^*((3r+1)^{\textrm{cw}})$ time, where $\textrm{cw}$ is the clique-width of the input graph, as well as a tight SETH lower bound matching this algorithm's performance. As a corollary, for $r=1$, this closes the gap that previously existed on the complexity of Dominating Set parameterized by $\textrm{cw}$. - We strengthen previously known FPT lower bounds, by showing that $(k,r)$-Center is W[1]-hard parameterized by the input graph's vertex cover (if edge weights are allowed), or feedback vertex set, even if $k$ is an additional parameter. Our reductions imply tight ETH-based lower bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs. - We show that the complexity of the problem parameterized by tree-depth is $2^{\Theta(\textrm{td}^2)}$ by showing an algorithm of this complexity and a tight ETH-based lower bound. We complement these mostly negative results by providing FPT approximation schemes parameterized by clique-width or treewidth which work efficiently independently of the values of $k,r$. In particular, we give algorithms which, for any $\epsilon>0$, run in time $O^*((\textrm{tw}/\epsilon)^{O(\textrm{tw})})$, $O^*((\textrm{cw}/\epsilon)^{O(\textrm{cw})})$ and return a $(k,(1+\epsilon)r)$-center, if a $(k,r)$-center exists, thus circumventing the problem's W-hardness.

[1]  Fedor V. Fomin Graph-Theoretic Concepts in Computer Science, 32nd International Workshop, WG 2006, Bergen, Norway, June 22-24, 2006, Revised Papers , 2006, WG.

[2]  Glencora Borradaile,et al.  Optimal dynamic program for r-domination problems over tree decompositions , 2015, IPEC.

[3]  Samir Khuller,et al.  Fault tolerant K-center problems , 1997, Theor. Comput. Sci..

[4]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[5]  Geevarghese Philip,et al.  Hardness of r-dominating set on Graphs of Diameter (r + 1) , 2013, IPEC.

[6]  Dániel Marx,et al.  Efficient Approximation Schemes for Geometric Problems? , 2005, ESA.

[7]  Michael Lampis,et al.  Structural parameters, tight bounds, and approximation for (k, r)-center , 2019, Discret. Appl. Math..

[8]  Feodor F. Dragan,et al.  A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs , 1998, Networks.

[9]  Jaroslav Nesetril,et al.  Tree-depth, subgraph coloring and homomorphism bounds , 2006, Eur. J. Comb..

[10]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[11]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[12]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[13]  Gerhard J. Woeginger,et al.  Scheduling of pipelined operator graphs , 2012, J. Sched..

[14]  Judit Bar-Ilan,et al.  How to Allocate Network Centers , 1993, J. Algorithms.

[15]  Jan Arne Telle,et al.  Algorithms for Vertex Partitioning Problems on Partial k-Trees , 1997, SIAM J. Discret. Math..

[16]  Kazuhisa Makino,et al.  Parameterized Edge Hamiltonicity , 2014, WG.

[17]  Samir Khuller,et al.  The Capacitated K-Center Problem , 2000, SIAM J. Discret. Math..

[18]  Erik D. Demaine,et al.  Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs , 2005, TALG.

[19]  Sigve Hortemo Sæther,et al.  Faster algorithms for vertex partitioning problems parameterized by clique-width , 2013, Theor. Comput. Sci..

[20]  Andreas Emil Feldmann,et al.  Fixed-Parameter Approximations for k-Center Problems in Low Highway Dimension Graphs , 2015, Algorithmica.

[21]  Michael Lampis,et al.  Parameterized Approximation Schemes Using Graph Widths , 2013, ICALP.

[22]  Pankaj K. Agarwal,et al.  Exact and Approximation Algortihms for Clustering , 1997 .

[23]  Sven Oliver Krumke,et al.  On a Generalization of the p-Center Problem , 1995, Inf. Process. Lett..

[24]  Rolf Niedermeier,et al.  Improved Tree Decomposition Based Algorithms for Domination-like Problems , 2002, LATIN.

[25]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[26]  Yoshiko Wakabayashi,et al.  The k-hop connected dominating set problem: hardness and polyhedra , 2015, Electron. Notes Discret. Math..

[27]  Erik Jan van Leeuwen,et al.  Faster Algorithms on Branch and Clique Decompositions , 2010, MFCS.

[28]  Hans L. Bodlaender,et al.  Treewidth: Characterizations, Applications, and Computations , 2006, WG.

[29]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[30]  Hans L. Bodlaender,et al.  The algorithmic theory of treewidth , 2000, Electron. Notes Discret. Math..

[31]  Egon Wanke,et al.  The Tree-Width of Clique-Width Bounded Graphs Without Kn, n , 2000, WG.

[32]  Peter J. Slater,et al.  R-Domination in Graphs , 1976, J. ACM.

[33]  Jan Arne Telle,et al.  Practical Algorithms on Partial k-Trees with an Application to Domination-like Problems , 1993, WADS.

[34]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[35]  Feodor F. Dragan,et al.  Parameterized Approximation Algorithms for Some Location Problems in Graphs , 2017, COCOA.

[36]  David Eisenstat,et al.  Approximating k-center in planar graphs , 2014, SODA.

[37]  Peter Rossmanith,et al.  Dynamic Programming on Tree Decompositions Using Generalised Fast Subset Convolution , 2009, ESA.

[38]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[39]  Dániel Marx,et al.  Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..

[40]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[41]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .

[42]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, SIAM J. Comput..

[43]  Dana Moshkovitz,et al.  The Projection Games Conjecture and the NP-Hardness of ln n-Approximating Set-Cover , 2012, Theory Comput..

[44]  Rina Panigrahy,et al.  An O(log*n) approximation algorithm for the asymmetric p-center problem , 1996, SODA '96.

[45]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[46]  Evripidis Bampis,et al.  Parameterized Power Vertex Cover , 2016, WG.

[47]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[48]  Petr A. Golovach,et al.  Parameterized Complexity for Domination Problems on Degenerate Graphs , 2008, WG.

[49]  David B. Shmoys,et al.  A unified approach to approximation algorithms for bottleneck problems , 1986, JACM.

[50]  David Peleg,et al.  The Fault Tolerant Capacitated k-Center Problem , 2012, SIROCCO.

[51]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[52]  A. Brandstädt,et al.  A linear-time algorithm for connected r-domination and Steiner tree on distance-hereditary graphs , 1998 .

[53]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.