Mixed ionic-electronic conducting (MIEC) membranes for hydrogen production from water splitting

[1]  Jhuma Sadhukhan,et al.  Process intensification aspects for steam methane reforming: An overview , 2009 .

[2]  Zhancheng Guo,et al.  The intensification technologies to water electrolysis for hydrogen production - A review , 2014 .

[3]  Effects of synthesis methods on oxygen permeability of BaCe0.15Fe0.85O3−δ ceramic membranes , 2006 .

[4]  Sun-Ju Song,et al.  A thermodynamically stable La2NiO4+δ/ Gd0.1Ce0.9O1.95 bilayer oxygen transport membrane in membrane-assisted water splitting for hydrogen production , 2013 .

[5]  U. Balachandran,et al.  Hydrogen Production by Steam Dissociation using Oxygen Transport Membranes , 2008 .

[6]  Tae H. Lee Oxygen permeation in dense SrCo0.8Fe0.2O3 − δ membranes: Surface exchange kinetics versus bulk diffusion , 1997 .

[7]  M. Matsuka,et al.  Photoelectrochemical hydrogen production from water using p-type and n-type oxide semiconductor electrodes , 2012 .

[8]  J. Pérez–Ramírez,et al.  Perovskite membranes in ammonia oxidation: towards process intensification in nitric acid manufacture. , 2005, Angewandte Chemie.

[9]  T. Ishihara,et al.  Photoelectrochemical Hydrogen Production from Water Using p-Type CaFe2O4 and n-Type ZnO , 2011 .

[10]  A. Thursfield,et al.  La0.6Sr0.4Co0.2Fe0.8O3−δ microtubular membranes for hydrogen production from water splitting , 2012 .

[11]  J. Caro,et al.  A coupling strategy to produce hydrogen and ethylene in a membrane reactor. , 2010, Angewandte Chemie.

[12]  G. Patience,et al.  Kinetics of mixed copper–iron based oxygen carriers for hydrogen production by chemical looping water splitting , 2012 .

[13]  Gilles Flamant,et al.  Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides , 2006 .

[14]  Jaka Sunarso,et al.  Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation , 2008 .

[15]  Xuefeng Zhu,et al.  Permeation Model and Experimental Investigation of Mixed Conducting Membranes , 2012 .

[16]  You Cong,et al.  Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors , 2010 .

[17]  Roger B. Poeppel,et al.  Dense ceramic membranes for partial oxidation of methane to syngas , 1995 .

[18]  Xuefeng Zhu,et al.  Design and experimental investigation of oxide ceramic dual-phase membranes , 2012 .

[19]  A. Rothschild,et al.  Thermally oxidized iron oxide nanoarchitectures for hydrogen production by solar-induced water splitting , 2012 .

[20]  E. A. Fletcher,et al.  Hydrogen- and Oxygen from Water , 1977, Science.

[21]  Y. S. Lin,et al.  Oxygen permeation through thin mixed-conducting solid oxide membranes , 1994 .

[22]  R. Cai,et al.  Novel and Ideal Zirconium-Based Dense Membrane Reactors for Partial Oxidation of Methane to Syngas , 2002 .

[23]  U. Balachandran,et al.  A cobalt-free oxygen transport membrane, BaFe0.9Zr0.1O3−δ, and its application for producing hydrogen , 2013 .

[24]  Abraham Kogan,et al.  Direct solar thermal splitting of water and on-site separation of the products—II. Experimental feasibility study , 1998 .

[25]  K. Domen,et al.  Photocatalytic decomposition of water over a Ni-Loaded Rb4Nb6O17 catalyst , 1990 .

[26]  W. Jin,et al.  Toward highly-effective and sustainable hydrogen production: bio-ethanol oxidative steam reforming coupled with water splitting in a thin tubular membrane reactor. , 2012, Chemical communications.

[27]  U. Balachandran,et al.  Hydrogen production from fossil and renewable sources using an oxygen transport membrane , 2010 .

[28]  William J. Thomson,et al.  Oxygen permeation rates through ion-conducting perovskite membranes , 1999 .

[29]  W. Sachtler,et al.  Spectroscopic Evidence for a Nitrite Intermediate in the Catalytic Reduction of NOx with Ammonia on Fe/MFI , 2002 .

[30]  J. Caro,et al.  Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor. , 2008, Angewandte Chemie.

[31]  Xuefeng Zhu,et al.  Phase transitions in Sr1 + xCo0.8Fe0.2O3 − δ oxides , 2010 .

[32]  Srikanth Gopalan,et al.  Hydrogen generation and separation using Gd0.2Ce0.8O1.9−δ–Gd0.08Sr0.88Ti0.95Al0.05O3±δ mixed ionic and electronic conducting membranes , 2011 .

[33]  U. Balachandran,et al.  Hydrogen production by water dissociation using mixed conducting dense ceramic membranes , 2007 .

[34]  Xuefeng Zhu,et al.  Single-step fabrication of asymmetric dual-phase composite membranes for oxygen separation , 2008 .

[35]  K. Efimov,et al.  Hydrogen production by water dissociation in surface-modified BaCo(x)Fe(y)Zr(1-x-y)O(3-delta) hollow-fiber membrane reactor with improved oxygen permeation. , 2010, Chemistry.

[36]  U. Balachandran,et al.  Oxygen permeation and coal-gas-assisted hydrogen production using oxygen transport membranes , 2011 .

[37]  U. Balachandran,et al.  Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes , 1997 .

[38]  J. Caro,et al.  Improved water dissociation and nitrous oxide decomposition by in situ oxygen removal in perovskite catalytic membrane reactor , 2010 .

[39]  U. Balachandran,et al.  La0.7Sr0.3Cu0.2Fe0.8O3-x as Oxygen Transport Membrane for Producing Hydrogen via Water Splitting , 2008 .

[40]  T. Nakamura,et al.  Hydrogen production from water utilizing solar heat at high temperatures , 1977 .

[41]  Zongping Shao,et al.  Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxygen membrane , 2000 .

[42]  H. Naito,et al.  Hydrogen production from direct water splitting at high temperatures using a ZrO2-TiO2-Y2O3 membrane , 1995 .

[43]  Ian S. Metcalfe,et al.  Chemical looping and oxygen permeable ceramic membranes for hydrogen production – a review , 2012 .

[44]  U. Balachandran,et al.  Use of mixed conducting membranes to produce hydrogen by water dissociation , 2004 .

[45]  Abraham Kogan Direct solar thermal splitting of water and on site separation of the products I. Theoretical evaluation of hydrogen yield , 1997 .

[46]  T. Kodama High-temperature solar chemistry for converting solar heat to chemical fuels , 2003 .

[47]  Srikanth Gopalan,et al.  Gd0.2Ce0.8O1.9-Y0.08Sr0.88Ti0.95Al0.05O3 + δ Composite Mixed Conductors for Hydrogen Separation , 2005 .

[48]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.

[49]  Haihui Wang,et al.  Relationship between homogeneity and oxygen permeability of composite membranes , 2008 .