Robust Control Systems of a Heavy Material Handling Agricultural Robot: A Case Study for Initial Cost Problem

As a case study for initial cost problem, we realize new manipulation and perception for a heavy material handling agricultural robot with high-cost components reductions, which requires more robust controllers. More precisely, first, we give a new manipulator with a passive joint and a new camera configuration with only one camera. Second, we design robust controllers using gain-scheduling and -synthesis based on some structural properties such as the friction in the presence of uncertainty, nonlinearity, and constraint, while avoiding conservative results by an analytical approach. Finally, we evaluate the validity by experiments in an actual open field, which is the most important part of this paper. The robust controllers reduce the initial cost.

[1]  Mikio Umeda,et al.  Development of Watermelon Harvesting Gripper , 1996 .

[2]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[3]  Satoru Sakai,et al.  Heavy material handling manipulator for agricultural robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Koichi Osuka,et al.  Active vision of a heavy material handling agricultural robot using robust control: a case study for initial cost problem , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Koichi Osuka,et al.  Watermelon harvesting experiment of a heavy material handling agricultural robot with LQ control , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Koichi Osuka,et al.  Control of a heavy material handling agricultural manipulator using /spl mu/-synthesis and robust gain scheduling , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[7]  Takahiro Inoue,et al.  Algorithm and Design of an Intelligent Digital Integrated Circuit for a Watermelon Harvesting Robot , 1999, J. Robotics Mechatronics.

[8]  Tomonari Furukawa,et al.  A low-cost gripper for an apple picking robot , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[9]  J. Bontsema,et al.  An Autonomous Robot for Harvesting Cucumbers in Greenhouses , 2002, Auton. Robots.

[10]  Kuan Chong Ting,et al.  Robotics for Bioproduction Systems , 1998 .

[11]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[12]  Tamer Inanc,et al.  H2 control with time-domain constraints: theory and an application , 2003, IEEE Trans. Autom. Control..

[13]  Mikio Umeda,et al.  Development of “STORK”, a watermelon-harvesting robot , 1999, Artificial Life and Robotics.

[14]  R. Bajcsy Active perception , 1988 .

[15]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[16]  G. Stein,et al.  Beyond singular values and loop shapes , 1991 .

[17]  Koichi Osuka,et al.  Global performance of agricultural robots , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[18]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[19]  P. Gahinet,et al.  A Convex Characterization of Gain-Scheduled H-Infinity Controllers (Vol 40, Pg 853, 1995) , 1995 .

[20]  Tateshi Fujiura,et al.  Study on Agricultural Robot (Part 1) , 1984 .

[21]  Carlos Canudas de Wit,et al.  Friction Models and Friction Compensation , 1998, Eur. J. Control.

[22]  G. Rabatel,et al.  Magali: a self-propelled robot to pick apples , 1987 .

[23]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[24]  Yael Edan,et al.  Human-robot collaboration for improved target recognition of agricultural robots , 2003, Ind. Robot.

[25]  Jose L Pons,et al.  A SURVEY OF COMPUTER VISION METHODS FOR LOCATING FRUIT ON TREES , 2000 .

[26]  Heon Hwang,et al.  Development of multi-functional tele-operative modular robotic system for greenhouse watermelon , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[27]  Yael Edan,et al.  Robotic melon harvesting , 2000, IEEE Trans. Robotics Autom..

[28]  T. Nagatani,et al.  Heavy Material Handling Robot for Agriculture : Development of Loading and Locomotion Function , 2002 .