Unlocking the potential of metal halide perovskite thermoelectrics through electrical doping: A critical review

Over the past decade, metal halide perovskites (MHPs) have received great attention, triggered by the tremendous success of their record‐breaking power conversion efficiency values in solar cells. Recently, there have been significant interests in fully utilizing their unique properties by exploring other device applications including thermoelectrics, which is promising due to their ultralow thermal conductivity and high mobility relative to their competitors among solution‐processable materials. However, the performance of MHP thermoelectrics reported so far falls significantly short of theoretical predictions, as the doping levels achieved to date are typically below the optimum values for maximizing the thermoelectric power factor, indicating the need for effective electrical doping strategies. In this critical review, recent studies aimed at enhancing the thermoelectric properties of MHPs are discussed, with a focus on the relatively under‐explored area of electrical doping in MHPs. The underlying charge transport mechanism and doping effect on transport are also examined. Finally, the challenges facing MHP thermoelectrics are highlighted, and potential research visions for achieving highly efficient thermoelectric conversion based on MHPs are offered.image

[1]  H. Sirringhaus,et al.  Bulk Incorporation of Molecular Dopants into Ruddlesden–Popper Organic Metal–Halide Perovskites for Charge Transfer Doping , 2023, Advanced Functional Materials.

[2]  H. Snaith,et al.  Passivation strategies for mitigating defect challenges in halide perovskite light-emitting diodes , 2023, Joule.

[3]  Zhao‐Kui Wang,et al.  Doping Strategies for Promising Organic-Inorganic Halide Perovskites. , 2023, Small.

[4]  Meng Li,et al.  Advances in Ionic Thermoelectrics: From Materials to Devices , 2023, Advanced Energy Materials.

[5]  Bingbing Liu,et al.  Pressure‐Tuning Photothermal Synergy to Optimize the Photoelectronic Properties in Amorphous Halide Perovskite Cs3Bi2I9 , 2022, Advanced science.

[6]  Takhee Lee,et al.  Reduced dopant-induced scattering in remote charge-transfer-doped MoS2 field-effect transistors , 2022, Science advances.

[7]  Hyejin Jang,et al.  Thermal Transport Properties of Phonons in Halide Perovskites. , 2022, Advanced materials.

[8]  M. A. Kamarudin,et al.  Unveiling the Role of the Metal Oxide/Sn Perovskite Interface Leading to Low Efficiency of Sn-Perovskite Solar Cells but Providing High Thermoelectric Properties , 2022, ACS Applied Energy Materials.

[9]  F. Palazón,et al.  Vacuum-Deposited Cesium Tin Iodide Thin Films with Tunable Thermoelectric Properties , 2022, ACS applied energy materials.

[10]  Yong‐Young Noh,et al.  Molecular Doping Enabling Mobility Boosting of 2D Sn2+‐Based Perovskites , 2022, Advanced Functional Materials.

[11]  K. Biswas,et al.  Insights into Low Thermal Conductivity in Inorganic Materials for Thermoelectrics. , 2022, Journal of the American Chemical Society.

[12]  H. Albalawi,et al.  DFT study of double perovskites Cs2AgBiX6 (X = Cl, Br): An alternative of hybrid perovskites , 2022, Journal of Solid State Chemistry.

[13]  Jing‐Kai Huang,et al.  Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces , 2022, Advanced materials.

[14]  Qifan Xue,et al.  Recent Progress of Halide Perovskites for Thermoelectric Application , 2022, Nano Energy.

[15]  D. Baran,et al.  Role of Dopants in Organic and Halide Perovskite Energy Conversion Devices , 2021, Chemistry of Materials.

[16]  A. Djurišić,et al.  Metal Halide Perovskites as Emerging Thermoelectric Materials , 2021, ACS Energy Letters.

[17]  A. Kahn,et al.  Molecular dopants: Tools to control the electronic structure of metal halide perovskite interfaces , 2021, Applied Physics Reviews.

[18]  X. Crispin,et al.  Wearable Thermoelectric Materials and Devices for Self‐Powered Electronic Systems , 2021, Advanced materials.

[19]  Akriti,et al.  Thermoelectric Performance of Lead-Free Two-Dimensional Halide Perovskites Featuring Conjugated Ligands. , 2021, Nano letters.

[20]  S. H. Kim,et al.  Enhancing Thermoelectric Power Factor of 2D Organometal Halide Perovskites by Suppressing 2D/3D Phase Separation , 2021, Advanced materials.

[21]  D. Reichman,et al.  The Significance of Polarons and Dynamic Disorder in Halide Perovskites , 2021 .

[22]  Bryon W. Larson,et al.  A Multi-Dimensional Perspective on Electronic Doping in Metal Halide Perovskites , 2021 .

[23]  S. Pennycook,et al.  High-entropy-stabilized chalcogenides with high thermoelectric performance , 2021, Science.

[24]  K. Feng,et al.  A High Seebeck Voltage Thermoelectric Module with P‐type and N‐type MAPbI3 Perovskite Single Crystals , 2021, Advanced Electronic Materials.

[25]  M. Kanatzidis,et al.  Blocking Ion Migration Stabilizes the High Thermoelectric Performance in Cu2Se Composites , 2020, Advanced materials.

[26]  G. Murtaza,et al.  Anion replacement effect on the physical properties of metal halide double perovskites Cs2AgInX6 (X=F, Cl, Br, I) , 2020 .

[27]  Yong‐Young Noh,et al.  High‐Performance and Reliable Lead‐Free Layered‐Perovskite Transistors , 2020, Advanced materials.

[28]  G. J. Snyder,et al.  All-inorganic halide perovskites as potential thermoelectric materials: Dynamic cation off-centering induces ultralow thermal conductivity. , 2020, Journal of the American Chemical Society.

[29]  D. Baran,et al.  Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity , 2020, Advanced science.

[30]  Yuanyuan Zhou,et al.  Enhanced Thermoelectric Performance in Lead-Free Inorganic CsSn1–xGexI3 Perovskite Semiconductors , 2020, The Journal of Physical Chemistry C.

[31]  A. Zakhidov,et al.  Polarons in Halide Perovskites: A Perspective. , 2020, The journal of physical chemistry letters.

[32]  B. Lai,et al.  The doping mechanism of halide perovskite unveiled by alkaline earth metals. , 2020, Journal of the American Chemical Society.

[33]  Satyaprasad P. Senanayak,et al.  Investigation of Electrode Electrochemical Reactions in CH3NH3PbBr3 Perovskite Single‐Crystal Field‐Effect Transistors , 2019, Advanced materials.

[34]  S. Hayase,et al.  Growth of halide perovskites thin films for thermoelectric applications , 2019, MRS Advances.

[35]  H. Zeng,et al.  A comprehensive review of doping in perovskite nanocrystals/quantum dots: evolution of structure, electronics, optics, and light-emitting diodes , 2019, Materials Today Nano.

[36]  Joo Sung Kim,et al.  Efficient Ruddlesden–Popper Perovskite Light‐Emitting Diodes with Randomly Oriented Nanocrystals , 2019, Advanced Functional Materials.

[37]  F. De Angelis,et al.  From Large to Small Polarons in Lead, Tin, and Mixed Lead-Tin Halide Perovskites. , 2019, The journal of physical chemistry letters.

[38]  Lin Sun,et al.  Bismuth Doping–Induced Stable Seebeck Effect Based on MAPbI3 Polycrystalline Thin Films , 2019, Advanced Functional Materials.

[39]  Ning Wang,et al.  Perovskite solar cell-thermoelectric tandem system with a high efficiency of over 23% , 2019, Materials Today Energy.

[40]  D. Reichman,et al.  How Lattice and Charge Fluctuations Control Carrier Dynamics in Halide Perovskites. , 2018, Nano letters.

[41]  H. Hosono,et al.  Lead‐Free Highly Efficient Blue‐Emitting Cs3Cu2I5 with 0D Electronic Structure , 2018, Advanced materials.

[42]  J. Ouyang,et al.  Polymer films with ultrahigh thermoelectric properties arising from significant seebeck coefficient enhancement by ion accumulation on surface , 2018, Nano Energy.

[43]  R. Friend,et al.  Dedoping of Lead Halide Perovskites Incorporating Monovalent Cations. , 2018, ACS nano.

[44]  M. Chabinyc,et al.  N‐Type Surface Doping of MAPbI3 via Charge Transfer from Small Molecules , 2018, Advanced Electronic Materials.

[45]  Yue Chen,et al.  3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals , 2018, Science.

[46]  Biwu Ma,et al.  Low-Dimensional Organometal Halide Perovskites , 2018 .

[47]  O. Ovchinnikova,et al.  Metal/Ion Interactions Induced p-i-n Junction in Methylammonium Lead Triiodide Perovskite Single Crystals. , 2017, Journal of the American Chemical Society.

[48]  X. Zhu,et al.  Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation , 2017, Science Advances.

[49]  Daoben Zhu,et al.  Conjugated-Backbone Effect of Organic Small Molecules for n-Type Thermoelectric Materials with ZT over 0.2. , 2017, Journal of the American Chemical Society.

[50]  Xiaoyang Zhu,et al.  Large polarons in lead halide perovskites , 2017, Science Advances.

[51]  J. Grossman,et al.  Ultralow thermal conductivity in all-inorganic halide perovskites , 2017, Proceedings of the National Academy of Sciences.

[52]  L. Herz Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits , 2017 .

[53]  Satyaprasad P. Senanayak,et al.  Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films , 2017 .

[54]  Dong Wang,et al.  Doping optimization of organic-inorganic hybrid perovskite CH3NH3PbI3 for high thermoelectric efficiency , 2017 .

[55]  E. Diau,et al.  Ag Doping of Organometal Lead Halide Perovskites: Morphology Modification and p-Type Character , 2017 .

[56]  P. Delugas,et al.  Appealing Perspectives of Hybrid Lead–Iodide Perovskites as Thermoelectric Materials , 2016 .

[57]  Daoben Zhu,et al.  Bismuth Interfacial Doping of Organic Small Molecules for High Performance n-type Thermoelectric Materials. , 2016, Angewandte Chemie.

[58]  Hsin Wang,et al.  N and p-type properties in organo-metal halide perovskites studied by Seebeck effects , 2016 .

[59]  C. Uher,et al.  Highly anisotropic P3HT films with enhanced thermoelectric performance via organic small molecule epitaxy , 2016 .

[60]  Gautam Gupta,et al.  Polaron Stabilization by Cooperative Lattice Distortion and Cation Rotations in Hybrid Perovskite Materials. , 2016, Nano letters.

[61]  H. Sirringhaus,et al.  2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. , 2016, Nature materials.

[62]  D. J. Clark,et al.  Ruddlesden-Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors , 2016 .

[63]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[64]  D. Mitzi,et al.  Thin-Film Deposition and Characterization of a Sn-Deficient Perovskite Derivative Cs2SnI6 , 2016 .

[65]  Kai Zhu,et al.  Origin of J-V Hysteresis in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[66]  N. Koch,et al.  Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. , 2016, Accounts of chemical research.

[67]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[68]  M. Bonn,et al.  Phonon-Electron Scattering Limits Free Charge Mobility in Methylammonium Lead Iodide Perovskites. , 2015, The journal of physical chemistry letters.

[69]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[70]  L. Kronik,et al.  Are Mobilities in Hybrid Organic-Inorganic Halide Perovskites Actually "High"? , 2015, The journal of physical chemistry letters.

[71]  Laura M. Herz,et al.  Temperature‐Dependent Charge‐Carrier Dynamics in CH3NH3PbI3 Perovskite Thin Films , 2015 .

[72]  Xinbing Zhao,et al.  Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials , 2015, Nature Communications.

[73]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[74]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[75]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[76]  G. J. Snyder,et al.  Ultrahigh Thermoelectric Performance in Mosaic Crystals , 2015, Advanced materials.

[77]  Davor Pavuna,et al.  Tuning of the Thermoelectric Figure of Merit of CH3NH3MI3 (M=Pb,Sn) Photovoltaic Perovskites , 2015, 1505.07389.

[78]  G. J. Snyder,et al.  Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics , 2015, Science.

[79]  K. Cai,et al.  A facile chemical reduction approach for effectively tuning thermoelectric properties of PEDOT films , 2015 .

[80]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[81]  Yang Yang,et al.  Solution-processed hybrid perovskite photodetectors with high detectivity , 2014, Nature Communications.

[82]  Yongli Gao,et al.  Qualifying composition dependent p and n self-doping in CH3NH3PbI3 , 2014 .

[83]  Shuzi Hayase,et al.  Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. , 2014, Journal of the American Chemical Society.

[84]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[85]  Giulia Galli,et al.  Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH3NH3AI3 (A = Pb and Sn) , 2014 .

[86]  Endre Horváth,et al.  Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. , 2014, The journal of physical chemistry letters.

[87]  G. J. Snyder,et al.  High Thermoelectric Performance in Non‐Toxic Earth‐Abundant Copper Sulfide , 2014, Advanced materials.

[88]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[89]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[90]  A. Grytsiv,et al.  n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R = Sr, La, Mm, DD, SrMm, SrDD) approaching ZT ≈ 2.0 , 2014 .

[91]  Xingyu Gao,et al.  Ultrahigh Thermoelectric Performance by Electron and Phonon Critical Scattering in Cu2Se1‐xIx , 2013, Advanced materials.

[92]  David J. Singh,et al.  Importance of non-parabolic band effects in the thermoelectric properties of semiconductors , 2013, Scientific Reports.

[93]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[94]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[95]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[96]  Hao Li,et al.  High thermoelectric performance via hierarchical compositionally alloyed nanostructures. , 2013, Journal of the American Chemical Society.

[97]  Heng Wang,et al.  Band Engineering of Thermoelectric Materials , 2012, Advanced materials.

[98]  X. Crispin,et al.  Tuning the thermoelectric properties of conducting polymers in an electrochemical transistor. , 2012, Journal of the American Chemical Society.

[99]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[100]  G. J. Snyder,et al.  Copper ion liquid-like thermoelectrics. , 2012, Nature materials.

[101]  Daoben Zhu,et al.  Organic Thermoelectric Materials and Devices Based on p‐ and n‐Type Poly(metal 1,1,2,2‐ethenetetrathiolate)s , 2012, Advanced materials.

[102]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[103]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[104]  Miaofang Chi,et al.  Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. , 2011, Journal of the American Chemical Society.

[105]  Henning Sirringhaus,et al.  Band-like temperature dependence of mobility in a solution-processed organic semiconductor. , 2010, Nature materials.

[106]  Terry M. Tritt,et al.  Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3 nanocomposites. , 2010, Nano letters.

[107]  M. Chi,et al.  On the Design of High‐Efficiency Thermoelectric Clathrates through a Systematic Cross‐Substitution of Framework Elements , 2010 .

[108]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[109]  G. Kotliar,et al.  Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals , 2009, Nature.

[110]  Hohyun Lee,et al.  Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy , 2008 .

[111]  Hohyun Lee,et al.  Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. , 2008, Nano letters.

[112]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[113]  Joshua Martin,et al.  Optimization of the thermoelectric properties of Ba8Ga16Ge30 , 2008 .

[114]  C. Uher,et al.  Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites , 2008 .

[115]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[116]  H. Anno,et al.  Thermoelectric properties of sintered clathrate compounds Sr8GaxGe46−x with various carrier concentrations , 2006 .

[117]  G. J. Snyder,et al.  Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.

[118]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[119]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[120]  C. Uher,et al.  Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12 , 2001 .

[121]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[122]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[123]  S. Hayase,et al.  Interface engineering using Y2O3 scaffold to enhance the thermoelectric performance of CsSnI3 thin film , 2020 .