Deterministic and randomized polynomial-time approximation of radii
暂无分享,去创建一个
Miklós Simonovits | Peter Gritzmann | László Lovász | Victor Klee | Andreas Brieden | Ravi Kannan | V. Klee | M. Simonovits | L. Lovász | R. Kannan | P. Gritzmann | A. Brieden
[1] M. Garey. Johnson: computers and intractability: a guide to the theory of np- completeness (freeman , 1979 .
[2] S. Dudov. An inner bound of a convex set by a norm body , 1996 .
[3] Miklós Simonovits,et al. Random walks and an O*(n5) volume algorithm for convex bodies , 1997, Random Struct. Algorithms.
[4] Joram Lindenstrauss,et al. Classical Banach spaces , 1973 .
[5] James B. Orlin,et al. On the complexity of four polyhedral set containment problems , 2018, Math. Program..
[6] Über die größte Kugel in einer konvexen Punktmenge , 1936 .
[7] Martin E. Dyer,et al. A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.
[8] Shlomo Reisner,et al. Volume approximation of convex bodies by polytopes - a constructive method , 1994 .
[9] John T. Gill,et al. Computational complexity of probabilistic Turing machines , 1974, STOC '74.
[10] M. Simonovits,et al. Random walks and an O * ( n 5 ) volume algorithm for convex bodies , 1997 .
[11] B. Carl. Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in Banach spaces , 1985 .
[12] Zoltán Füredi,et al. Approximation of the sphere by polytopes having few vertices , 1988 .
[13] J. Sylvester. LX. Thoughts on inverse orthogonal matrices, simultaneous signsuccessions, and tessellated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers , 1867 .
[14] B. Bollobás. THE VOLUME OF CONVEX BODIES AND BANACH SPACE GEOMETRY (Cambridge Tracts in Mathematics 94) , 1991 .
[15] Peter Gritzmann,et al. On Helly's Theorem: Algorithms and Extensions , 1997, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[16] Y. Gordon,et al. Constructing a polytope to approximate a convex body , 1995 .
[17] Mihalis Yannakakis,et al. Optimization, approximation, and complexity classes , 1991, STOC '88.
[18] Alain Pajor,et al. Convex bodies with few faces , 1989 .
[19] Panos M. Pardalos. Approximation and Complexity in Numerical Optimization , 2000 .
[20] N. Tomczak-Jaegermann. Banach-Mazur distances and finite-dimensional operator ideals , 1989 .
[21] Zoltán Füredi,et al. Computing the volume is difficult , 1986, STOC '86.
[22] Heinrich W. E. Jung. Über den kleinsten Kreis, der eine ebene Figur einschließt. , 1910 .
[23] Hans Jürgen Prömel,et al. Lectures on Proof Verification and Approximation Algorithms , 1998, Lecture Notes in Computer Science.
[24] P. Gruber. Aspects of Approximation of Convex Bodies , 1993 .
[25] Paul Steinhagen,et al. Über die größte Kugel in einer konvexen Punktmenge , 1922 .
[26] Douglas R Stinson,et al. Contemporary design theory : a collection of surveys , 1992 .
[27] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[28] Peter Gritzmann,et al. Computational complexity of inner and outerj-radii of polytopes in finite-dimensional normed spaces , 1993, Math. Program..
[29] N. Z. Shor. Cut-off method with space extension in convex programming problems , 1977, Cybernetics.
[30] Michael J. Todd,et al. Polynomial Algorithms for Linear Programming , 1988 .
[31] J. Vaaler. A geometric inequality with applications to linear forms , 1979 .
[32] A. Khintchine. Über dyadische Brüche , 1923 .
[33] Thomas Jansen,et al. Introduction to the Theory of Complexity and Approximation Algorithms , 1997, Lectures on Proof Verification and Approximation Algorithms.
[34] J. Kahane. Some Random Series of Functions , 1985 .
[35] György Elekes,et al. A geometric inequality and the complexity of computing volume , 1986, Discret. Comput. Geom..
[36] B. Carl,et al. Gelfand numbers of operators with values in a Hilbert space , 1988 .
[37] V. Klee,et al. Helly's theorem and its relatives , 1963 .
[38] Jan van Leeuwen,et al. Computational complexity of norm-maximization , 1990, Comb..
[39] Jörg M. Wills,et al. Handbook of Convex Geometry , 1993 .
[40] Leslie G. Valiant,et al. Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..
[41] Peter Gritzmann,et al. On the complexity of some basic problems in computational convexity: I. Containment problems , 1994, Discret. Math..
[42] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[43] Peter Gritzmann,et al. Inapproximability of some Geometric and Quadratic Optimization Problems , 2000 .
[44] M. Kochol. Constructive approximation of a ball by polytopes , 1994 .
[45] Peter Gritzmann,et al. On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumes , 1994, Universität Trier, Mathematik/Informatik, Forschungsbericht.
[46] G. Pisier,et al. The Law of Large Numbers and the Central Limit Theorem in Banach Spaces , 1976 .
[47] J. Hoffmann-jorgensen. Sums of independent Banach space valued random variables , 1974 .
[48] J. Seberry,et al. Hadamard matrices, Sequences, and Block Designs , 1992 .
[49] Miklós Simonovits,et al. On the randomized complexity of volume and diameter , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[50] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[51] Martin E. Dyer,et al. On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..
[52] G. Pisier. The volume of convex bodies and Banach space geometry , 1989 .
[53] Peter Gritzmann,et al. Inner and outerj-radii of convex bodies in finite-dimensional normed spaces , 1992, Discret. Comput. Geom..