Spatially-separated redox sites enabling selective atmospheric CO2 photoreduction to CH4

[1]  P. Stathi,et al.  Multipotent Atomic Palladium Species Pd1+, Pd2+–O2–, and Pd3+ Formed at the Interface of Pd/TiO2 Nanoparticles: Electron Paramagnetic Resonance Study , 2022, The Journal of Physical Chemistry C.

[2]  T. Chen,et al.  Metal-induced oxygen vacancies on Bi2WO6 for efficient CO2 photoreduction , 2022, Science China Materials.

[3]  Wensheng Yan,et al.  Room-Temperature Photooxidation of CH4 to CH3OH with Nearly 100% Selectivity over Hetero-ZnO/Fe2O3 Porous Nanosheets. , 2022, Journal of the American Chemical Society.

[4]  Yingwei Li,et al.  N-doped nanocarbon embedded in hierarchically porous metal-organic frameworks for highly efficient CO2 fixation , 2022, Science China Chemistry.

[5]  E. Waclawik,et al.  Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2 , 2022, Nature Communications.

[6]  Yuen Wu,et al.  Synergy between Palladium Single Atoms and Nanoparticles via Hydrogen Spillover for Enhancing CO2 Photoreduction to CH4 , 2022, Advanced materials.

[7]  Zhenyi Zhang,et al.  Plasmonic Active “Hot Spots”‐Confined Photocatalytic CO2 Reduction with High Selectivity for CH4 Production , 2022, Advanced materials.

[8]  Yi Xie,et al.  Catalysts design for CO2 electroreduction , 2021, Science China Chemistry.

[9]  Tae Kyu Kim,et al.  Highly durable and fully dispersed Co diatomic site catalysts for CO2 photoreduction to CH4. , 2021, Angewandte Chemie.

[10]  H. Ullah,et al.  Plasmon Assisted Highly Efficient Visible Light Catalytic CO2 Reduction Over the Noble Metal Decorated Sr-Incorporated g-C3N4 , 2021, Nano-micro letters.

[11]  Jiaguo Yu,et al.  In situ Irradiated XPS Investigation on S-Scheme TiO2 @ZnIn2 S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction. , 2021, Small.

[12]  Da‐Gang Yu,et al.  Visible-light-driven external-photocatalyst-free alkylative carboxylation of alkenes with CO2 , 2021, Science China Chemistry.

[13]  Junfa Zhu,et al.  Atmospheric CO2 capture and photofixation to near-unity CO by Ti3+-Vo-Ti3+ sites confined in TiO2 ultrathin layers , 2021, Science China Chemistry.

[14]  Yi Xie,et al.  Ultrastable and Efficient Visible-light-driven CO2 Reduction Triggered by Regenerative Oxygen-vacancies in Bi2O2CO3 Nanosheets. , 2021, Angewandte Chemie.

[15]  Yi Xie,et al.  In-plane heterostructured Ag2S-In2S3 atomic layers enabling boosted CO2 photoreduction into CH4 , 2021, Nano Research.

[16]  G. Ozin,et al.  Persistent CO2 photocatalysis for solar fuels in the dark , 2021, Nature Sustainability.

[17]  K. Domen,et al.  Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H2O2 production , 2020, Proceedings of the National Academy of Sciences.

[18]  Xiaoliang Xu,et al.  Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers , 2019, Nature Energy.

[19]  X. Lou,et al.  Construction of ZnIn2S4-In2O3 Hierarchical Tubular Heterostructures for Efficient CO2 Photoreduction. , 2018, Journal of the American Chemical Society.

[20]  Jun Jiang,et al.  Isolation of Cu Atoms in Pd Lattice: Forming Highly Selective Sites for Photocatalytic Conversion of CO2 to CH4. , 2017, Journal of the American Chemical Society.

[21]  Qiang Fu,et al.  Catalysis with two-dimensional materials and their heterostructures. , 2016, Nature nanotechnology.

[22]  U. Banin,et al.  Synthesis and photocatalytic properties of a family of CdS-PdX hybrid nanoparticles. , 2011, Angewandte Chemie.