Direct observation of the iron binding sites in a ferritin

[1]  P. Harrison,et al.  Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin: a study aided by site-directed mutagenesis. , 1993, The Biochemical journal.

[2]  P. Harrison,et al.  Iron (II) oxidation and early intermediates of iron-core formation in recombinant human H-chain ferritin. , 1993, The Biochemical journal.

[3]  Stephen J. Lippard,et al.  Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane , 1993, Nature.

[4]  P. Harrison,et al.  Overproduction, purification and characterization of the Escherichia coli ferritin. , 1993, European journal of biochemistry.

[5]  G. Moore,et al.  Kinetic and structural characterization of an intermediate in the biomineralization of bacterioferritin , 1993, FEBS letters.

[6]  G. Moore,et al.  An EPR investigation of non‐haem iron sites in Escherichia coli bacterioferritin and their interaction with phosphate , 1993, FEBS letters.

[7]  Elizabeth C. Theil,et al.  Formation of an Fe(III)-tyrosinate complex during biomineralization of H-subunit ferritin. , 1993, Science.

[8]  N. Chasteen,et al.  Ferroxidase kinetics of horse spleen apoferritin. , 1992, The Journal of biological chemistry.

[9]  P. Harrison,et al.  Evidence of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. , 1992, The Biochemical journal.

[10]  P. Harrison,et al.  Structure, function, and evolution of ferritins. , 1992, Journal of inorganic biochemistry.

[11]  S. Yewdall,et al.  Mechanism of catalysis of Fe(II) oxidation by ferritin H chains , 1992, FEBS letters.

[12]  P. Artymiuk,et al.  Probing Structure-Function Relations In Ferritin And Bacterioferritin , 1991 .

[13]  P. Harrison,et al.  Mössbauer spectroscopic investigation of structure-function relations in ferritins. , 1991, Biochimica et biophysica acta.

[14]  P. Harrison,et al.  Influence of site-directed modifications on the formation of iron cores in ferritin. , 1991, Journal of molecular biology.

[15]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[16]  M. Holmes,et al.  Structures of met and azidomet hemerythrin at 1.66 A resolution. , 1991, Journal of molecular biology.

[17]  W. V. Shaw,et al.  Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts , 1991, Nature.

[18]  Hans Eklund,et al.  Three-dimensional structure of the free radical protein of ribonucleotide reductase , 1990, Nature.

[19]  P. Harrison,et al.  Mössbauer spectroscopic study of the initial stages of iron-core formation in horse spleen apoferritin: evidence for both isolated Fe(III) atoms and oxo-bridged Fe(III) dimers as early intermediates. , 1989, Biochemistry.

[20]  Axel T. Brunger,et al.  A memory-efficient fast Fourier transformation algorithm for crystallographic refinement on supercomputers , 1989 .

[21]  J. V. Bannister,et al.  Structure and composition of ferritin cores isolated from human spleen, limpet (Patella vulgata) hemolymph and bacterial (Pseudomonas aeruginosa) cells. , 1986, Journal of molecular biology.

[22]  Jones Ta,et al.  Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. , 1985, Methods in enzymology.

[23]  A. J. Kalb,et al.  The composition and the structure of bacterioferritin of Escherichia coli. , 1981, The Biochemical journal.

[24]  M. Page,et al.  The kinetics of the beta-galactoside-proton symport of Escherichia coli. , 1981, The Biochemical journal.

[25]  P. Harrison,et al.  The formation of ferritin from apoferritin. Kinetics and mechanism of iron uptake. , 1972, The Biochemical journal.

[26]  P. Harrison,et al.  The structural relationship between ferritin protein and its mineral core. , 1969, Journal of molecular biology.