On immunotherapies and cancer vaccination protocols: a mathematical modelling approach.

In this paper we develop a new mathematical model of immunotherapy and cancer vaccination, focusing on the role of antigen presentation and co-stimulatory signaling pathways in cancer immunology. We investigate the effect of different cancer vaccination protocols on the well-documented phenomena of cancer dormancy and recurrence, and we provide a possible explanation of why adoptive (i.e. passive) immunotherapy protocols can sometimes actually promote tumour growth instead of inhibiting it (a phenomenon called immunostimulation), as opposed to active vaccination protocols based on tumour-antigen pulsed dendritic cells. Significantly, the results of our computational simulations suggest that elevated numbers of professional antigen presenting cells correlate well with prolonged time periods of cancer dormancy.

[1]  R. Gatenby,et al.  Application of competition theory to tumour growth: implications for tumour biology and treatment. , 1996, European journal of cancer.

[2]  Jorge Carneiro,et al.  How Regulatory CD25+CD4+ T Cells Impinge on Tumor Immunobiology: The Differential Response of Tumors to Therapies , 2007, The Journal of Immunology.

[3]  A. Strasser,et al.  Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. , 2003, Annual review of immunology.

[4]  J A Sherratt,et al.  Pattern formation and spatiotemporal irregularity in a model for macrophage-tumour interactions. , 1997, Journal of theoretical biology.

[5]  A. Palucka,et al.  Dendritic cells as therapeutic vaccines against cancer , 2005, Nature Reviews Immunology.

[6]  Mark A. J. Chaplain,et al.  Mathematical Modelling of Spatio-temporal Phenomena in Tumour Immunology , 2006 .

[7]  Luigi Preziosi,et al.  Modelling Tumor Progression, Heterogeneity, and Immune Competition , 2002 .

[8]  Yuri Kogan,et al.  Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics , 2008 .

[9]  C. T. Chan,et al.  Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy. , 1999, Biophysical journal.

[10]  Dominik Wodarz,et al.  Killer cell dynamics : mathematical and computational approaches to immunology , 2007 .

[11]  A. Perelson,et al.  Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. , 1994, Bulletin of mathematical biology.

[12]  S. Cox,et al.  Modelling Macrophage Infiltration into Avascular Tumours , 2002 .

[13]  Urszula Foryś,et al.  THREE TYPES OF SIMPLE DDE'S DESCRIBING TUMOR GROWTH , 2007 .

[14]  A. Abbas,et al.  Cellular and Molecular Immunology , 1991 .

[15]  R. Gatenby,et al.  Models of tumor-host interaction as competing populations: implications for tumor biology and treatment. , 1995, Journal of theoretical biology.

[16]  Mark A. J. Chaplain,et al.  On Growth and Form: Spatio-temporal Pattern Formation in Biology , 2000 .

[17]  J. Uhr,et al.  Dormancy in a model of murine B cell lymphoma. , 2001, Seminars in cancer biology.

[18]  D. Joshua,et al.  T cells in myeloma , 2003, Hematological oncology.

[19]  Yuri Kogan,et al.  Improving alloreactive CTL immunotherapy for malignant gliomas using a simulation model of their interactive dynamics , 2008, Cancer Immunology, Immunotherapy.

[20]  J. Uhr,et al.  Tumor dormancy. I. Regression of BCL1 tumor and induction of a dormant tumor state in mice chimeric at the major histocompatibility complex. , 1986, Journal of immunology.

[21]  J. Sherratt,et al.  Cells behaving badly: a theoretical model for the Fas/FasL system in tumour immunology. , 2002, Mathematical biosciences.

[22]  M. Chaplain,et al.  Travelling-wave analysis of a model of the immune response to cancer. , 2004, Comptes rendus biologies.

[23]  Dominik Wodarz,et al.  Killer cell dynamics , 2006 .

[24]  Gieri Simonett,et al.  Mathematical models in medical and health science , 1998 .

[25]  Luisa Arlotti,et al.  A Kinetic Model of Tumor/Immune System Cellular Interactions , 2002 .

[26]  Urszula Foryś,et al.  Marchuk's Model of Immune System Dynamics with Application to Tumour Growth , 2002 .

[27]  S. Rosenberg,et al.  Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  D. Farber,et al.  Vaccine-based approaches to squamous cell carcinoma of the head and neck. , 2007, Oral diseases.

[29]  Nicola Bellomo,et al.  BIFURCATION ANALYSIS FOR A NONLINEAR SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS MODELLING TUMOR-IMMUNE CELLS COMPETITION , 1999 .

[30]  Zuzanna Szyma ANALYSIS OF IMMUNOTHERAPY MODELS IN THE CONTEXT OF CANCER DYNAMICS , 2003 .

[31]  S. Rosenberg,et al.  Adoptive immunotherapy for cancer: building on success , 2006, Nature Reviews Immunology.

[32]  A. Radunskaya,et al.  Mixed Immunotherapy and Chemotherapy of Tumors: Modeling, Applications and Biological Interpretations , 2022 .

[33]  F. Shanahan,et al.  The Fas counterattack: cancer as a site of immune privilege. , 1999, Immunology today.

[34]  René Lefever,et al.  Stability problems in cancer growth and nucleation , 1980 .

[35]  Markus R. Owen,et al.  MATHEMATICAL MODELLING OF MACROPHAGE DYNAMICS IN TUMOURS , 1999 .

[36]  Bard Ermentrout,et al.  Simulating, analyzing, and animating dynamical systems - a guide to XPPAUT for researchers and students , 2002, Software, environments, tools.

[37]  Nicola Bellomo,et al.  From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells ✩ , 2008 .

[38]  Addolorata Marasco,et al.  Bifurcation analysis for a mean field modelling of tumor and immune system competition , 2003 .

[39]  Eli Gilboa,et al.  The promise of cancer vaccines , 2004, Nature Reviews Cancer.

[40]  M. Delitala Critical analysis and perspectives on kinetic (cellular) theory of immune competition , 2002 .

[41]  Nicola Bellomo,et al.  The modelling of the immune competition by generalized kinetic (Boltzmann) models: Review and research perspectives , 2003 .

[42]  Nicola Bellomo,et al.  MATHEMATICAL TOPICS ON THE MODELLING COMPLEX MULTICELLULAR SYSTEMS AND TUMOR IMMUNE CELLS COMPETITION , 2004 .

[43]  D. Kirschner,et al.  A mathematical model of tumor-immune evasion and siRNA treatment , 2003 .

[44]  Jonathan M. Austyn,et al.  Dendritic cells , 1998, Current opinion in hematology.

[45]  M. Chaplain,et al.  Spatio-temporal dynamics of the immune system response to cancer , 1997 .

[46]  A. Adler,et al.  Dendritic cells program non‐immunogenic prostate‐specific T cell responses beginning at early stages of prostate tumorigenesis , 2007, The Prostate.

[47]  D. Kirschner,et al.  Modeling immunotherapy of the tumor – immune interaction , 1998, Journal of mathematical biology.

[48]  R. Weinberg,et al.  The Biology of Cancer , 2006 .

[49]  M. O.,et al.  Pattern Formation and Spatiotemporal Irregularity in a Model for Macrophage – Tumour Interactions , 1997 .

[50]  J A Sherratt,et al.  Modelling the macrophage invasion of tumours: effects on growth and composition. , 1998, IMA journal of mathematics applied in medicine and biology.

[51]  N. MacDonald Nonlinear dynamics , 1980, Nature.

[52]  Mark A J Chaplain,et al.  Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. , 2004, Mathematical medicine and biology : a journal of the IMA.

[53]  R. Sutherland,et al.  Growth and cellular characteristics of multicell spheroids. , 1984, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[54]  A. Abbas,et al.  Comprar Cellular and Molecular Immunology | Shiv Pillai | 9781416031222 | Saunders , 2007 .

[55]  L. Preziosi,et al.  Modelling and mathematical problems related to tumor evolution and its interaction with the immune system , 2000 .