Molybdenum and tungsten-dependent formate dehydrogenases

[1]  J. Moura,et al.  Mo–Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas , 2014, JBIC Journal of Biological Inorganic Chemistry.

[2]  R. Hille,et al.  The mononuclear molybdenum enzymes. , 1996, Chemical reviews.

[3]  I. Pereira An Enzymatic Route to H2 Storage , 2013, Science.

[4]  V. Müller,et al.  Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial Carbon Dioxide Reductase , 2013, Science.

[5]  T. Hartmann,et al.  The oxygen‐tolerant and NAD+‐dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate , 2013, The FEBS journal.

[6]  P. Fernandes,et al.  The sulfur shift: an activation mechanism for periplasmic nitrate reductase and formate dehydrogenase. , 2013, Inorganic chemistry.

[7]  M. Yoshimoto,et al.  Preparation of liposome-coupled NADH and evaluation of its affinity toward formate dehydrogenase based on deactivation kinetics of the enzyme. , 2013, Colloids and surfaces. B, Biointerfaces.

[8]  B. Guigliarelli,et al.  The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. , 2013, Biochimica et biophysica acta.

[9]  G. Voordouw,et al.  Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism. , 2013, Microbiology.

[10]  K. Okamoto,et al.  Send Orders of Reprints at Reprints@benthamscience.net Chemical Nature and Reaction Mechanisms of the Molybdenum Cofactor of Xanthine Oxidoreductase , 2022 .

[11]  R. Hille The molybdenum oxotransferases and related enzymes. , 2013, Dalton transactions.

[12]  M. Klotz,et al.  Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. , 2013, Biochimica et biophysica acta.

[13]  Min Pan,et al.  Effects of H2 and Formate on Growth Yield and Regulation of Methanogenesis in Methanococcus maripaludis , 2013, Journal of bacteriology.

[14]  Hye-Kyung Kim,et al.  Clostridium carboxidivorans Strain P7T Recombinant Formate Dehydrogenase Catalyzes Reduction of CO2 to Formate , 2012, Applied and Environmental Microbiology.

[15]  R. Mendel,et al.  Cell biology of molybdenum in plants and humans. , 2012, Biochimica et biophysica acta.

[16]  E. Papaleo,et al.  Evidence for the formation of a Mo-H intermediate in the catalytic cycle of formate dehydrogenase. , 2012, Inorganic chemistry.

[17]  R. K. Yadav,et al.  A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2. , 2012, Journal of the American Chemical Society.

[18]  A. Trchounian,et al.  Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the F0F1-ATPase , 2012, Critical reviews in biochemistry and molecular biology.

[19]  I. Pereira,et al.  Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774 , 2012, JBIC Journal of Biological Inorganic Chemistry.

[20]  F. Bittner,et al.  A Sulfurtransferase Is Essential for Activity of Formate Dehydrogenases in Escherichia coli* , 2011, The Journal of Biological Chemistry.

[21]  N. M. Cerqueira,et al.  The mechanism of formate oxidation by metal-dependent formate dehydrogenases , 2011, JBIC Journal of Biological Inorganic Chemistry.

[22]  A. Stams,et al.  Formate Formation and Formate Conversion in Biological Fuels Production , 2011, Enzyme research.

[23]  R. Mendel,et al.  Molybdenum in living systems , 2011 .

[24]  F. Bittner,et al.  Molybdenum enzymes in higher organisms. , 2011, Coordination chemistry reviews.

[25]  C. Rodrigues-Pousada,et al.  Tungsten and Molybdenum Regulation of Formate Dehydrogenase Expression in Desulfovibrio vulgaris Hildenborough , 2011, Journal of bacteriology.

[26]  C. Brondino,et al.  Effects of Molybdate and Tungstate on Expression Levels and Biochemical Characteristics of Formate Dehydrogenases Produced by Desulfovibrio alaskensis NCIMB 13491 , 2011, Journal of bacteriology.

[27]  I. Pereira,et al.  A Comparative Genomic Analysis of Energy Metabolism in Sulfate Reducing Bacteria and Archaea , 2011, Front. Microbio..

[28]  Serge R. Guiot,et al.  Genomic Analysis of Carbon Monoxide Utilization and Butanol Production by Clostridium carboxidivorans Strain P7T , 2010, PloS one.

[29]  Yoginder S. Dandass,et al.  Genome Sequence of the Solvent-Producing Bacterium Clostridium carboxidivorans Strain P7T , 2010, Journal of bacteriology.

[30]  D. Appling,et al.  Compartmentalization of Mammalian folate-mediated one-carbon metabolism. , 2010, Annual review of nutrition.

[31]  P. Verhaert,et al.  Molybdenum Incorporation in Tungsten Aldehyde Oxidoreductase Enzymes from Pyrococcus furiosus , 2010, Journal of bacteriology.

[32]  J. Leigh,et al.  Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase , 2010, Proceedings of the National Academy of Sciences.

[33]  S. Krupenko,et al.  ALDH1L2 Is the Mitochondrial Homolog of 10-Formyltetrahydrofolate Dehydrogenase* , 2010, The Journal of Biological Chemistry.

[34]  V. Thareau,et al.  Three highly similar formate dehydrogenase genes located in the vicinity of the B4 resistance gene cluster are differentially expressed under biotic and abiotic stresses in Phaseolus vulgaris , 2010, Theoretical and Applied Genetics.

[35]  R. Gunsalus,et al.  Syntrophy in anaerobic global carbon cycles. , 2009, Current opinion in biotechnology.

[36]  K. Polyakov,et al.  Atomic Resolution Crystal Structure of NAD+-Dependent Formate Dehydrogenase from Bacterium Moraxella sp. C-1 , 2009, Acta naturae.

[37]  R. Mendel,et al.  Molybdenum cofactors, enzymes and pathways , 2009, Nature.

[38]  Alfons J. M. Stams,et al.  Electron transfer in syntrophic communities of anaerobic bacteria and archaea , 2009, Nature Reviews Microbiology.

[39]  N. Labrou,et al.  Cloning and characterization of Lotus japonicus formate dehydrogenase: a possible correlation with hypoxia. , 2009, Biochimica et biophysica acta.

[40]  G. George,et al.  Molybdenum induces the expression of a protein containing a new heterometallic Mo-Fe cluster in Desulfovibrio alaskensis. , 2009, Biochemistry.

[41]  W. Hagen,et al.  The bioinorganic chemistry of tungsten , 2009 .

[42]  A. Anbar Elements and Evolution , 2008, Science.

[43]  S. Ragsdale,et al.  Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. , 2008, Biochimica et biophysica acta.

[44]  F. Joó Breakthroughs in hydrogen storage--formic Acid as a sustainable storage material for hydrogen. , 2008, ChemSusChem.

[45]  N. Russo,et al.  Reaction mechanism of molybdoenzyme formate dehydrogenase. , 2008, Chemistry.

[46]  J. Weiner,et al.  The prokaryotic complex iron-sulfur molybdoenzyme family. , 2008, Biochimica et biophysica acta.

[47]  T. Reda,et al.  Reversible interconversion of carbon dioxide and formate by an electroactive enzyme , 2008, Proceedings of the National Academy of Sciences.

[48]  R. Castillo,et al.  A theoretical study of the catalytic mechanism of formate dehydrogenase. , 2008, The journal of physical chemistry. B.

[49]  Takeshi Nishino,et al.  Mammalian xanthine oxidoreductase – mechanism of transition from xanthine dehydrogenase to xanthine oxidase , 2008, The FEBS journal.

[50]  P. Curmi,et al.  Molecular mechanism of energy conservation in polysulfide respiration , 2008, Nature Structural &Molecular Biology.

[51]  J. Andreesen,et al.  Tungsten, the Surprisingly Positively Acting Heavy Metal Element for Prokaryotes , 2008, Annals of the New York Academy of Sciences.

[52]  C. Brondino,et al.  EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction. , 2007, Journal of inorganic biochemistry.

[53]  Gregory J. Crowther,et al.  Identification of a Fourth Formate Dehydrogenase in Methylobacterium extorquens AM1 and Confirmation of the Essential Role of Formate Oxidation in Methylotrophy , 2007, Journal of bacteriology.

[54]  J. Fredrickson,et al.  Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes , 2007, Molecular microbiology.

[55]  Jagat Narula,et al.  Molecular imaging in cardiology , 2007 .

[56]  Maria João Ramos,et al.  The carboxylate shift in zinc enzymes: a computational study. , 2007, Journal of the American Chemical Society.

[57]  M. Romão,et al.  Formate-reduced E. coli formate dehydrogenase H: the reinterpretation of the crystal structure suggests a new reaction mechanism , 2006, JBIC Journal of Biological Inorganic Chemistry.

[58]  Zhongyi Jiang,et al.  Efficient conversion of CO2 to formic acid by formate dehydrogenase immobilized in a novel alginate–silica hybrid gel , 2006 .

[59]  V. Popov,et al.  Protein engineering of formate dehydrogenase. , 2006, Biomolecular engineering.

[60]  G. Farquhar,et al.  Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R. Hille Structure and Function of Xanthine Oxidoreductase , 2006 .

[62]  C. Brondino,et al.  Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction. , 2006, Journal of inorganic biochemistry.

[63]  Philip Hinchliffe,et al.  Structure of the Hydrophilic Domain of Respiratory Complex I from Thermus thermophilus , 2006, Science.

[64]  C. Soares,et al.  Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. , 2005, Progress in biophysics and molecular biology.

[65]  F. Guerlesquin,et al.  Role of the tetrahemic subunit in Desulfovibrio vulgaris hildenborough formate dehydrogenase. , 2005, Biochemistry.

[66]  K. Polyakov,et al.  Structure of a new crystal modification of the bacterial NAD-dependent formate dehydrogenase with a resolution of 2.1 Å , 2005 .

[67]  R. Tanner,et al.  Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. , 2005, International journal of systematic and evolutionary microbiology.

[68]  D. Richardson,et al.  Nitrate reduction by Desulfovibrio desulfuricans: a periplasmic nitrate reductase system that lacks NapB, but includes a unique tetraheme c-type cytochrome, NapM. , 2005, FEMS microbiology letters.

[69]  R. Sawers,et al.  Formate and its role in hydrogen production in Escherichia coli. , 2005, Biochemical Society transactions.

[70]  R. Hille Molybdenum-containing hydroxylases. , 2005, Archives of biochemistry and biophysics.

[71]  N. Esaki,et al.  Robust NADH-regenerator: improved α-haloketone-resistant formate dehydrogenase , 2005, Applied Microbiology and Biotechnology.

[72]  M. Romão,et al.  Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases , 2004, JBIC Journal of Biological Inorganic Chemistry.

[73]  A. Messerschmidt,et al.  Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[74]  J. Calvete,et al.  Antagonists Mo and Cu in a heterometallic cluster present on a novel protein (orange protein) isolated from Desulfovibrio gigas. , 2004, Journal of inorganic biochemistry.

[75]  Rekha Seshadri,et al.  The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough , 2004, Nature Biotechnology.

[76]  D. Richardson,et al.  Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. , 2004, Structure.

[77]  M. Lidstrom,et al.  Multiple Formate Dehydrogenase Enzymes in the Facultative Methylotroph Methylobacterium extorquens AM1 Are Dispensable for Growth on Methanol , 2004, Journal of bacteriology.

[78]  K. Bagramyan,et al.  Structural and Functional Features of Formate Hydrogen Lyase, an Enzyme of Mixed-Acid Fermentation from Escherichia coli , 2003, Biochemistry (Moscow).

[79]  Y. Amao,et al.  Bio-CO2 fixation with formate dehydrogenase from Saccharomyces cerevisiae and water-soluble zinc porphyrin by visible light , 2002, Biotechnology Letters.

[80]  A. Stams,et al.  Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria , 1995, Antonie van Leeuwenhoek.

[81]  F. Girio,et al.  The effect of molybdate and tungstate ions on the metabolic rates and enzyme activities in methanol-grown Methylobacterium sp. RXM , 1994, Applied Microbiology and Biotechnology.

[82]  Kelly P. Nevin,et al.  Dissimilatory Fe(III) and Mn(IV) reduction. , 1991, Advances in microbial physiology.

[83]  F. Widdel,et al.  Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate , 1988, Archives of Microbiology.

[84]  B. Schink Fermentation of acetylene by an obligate anaerobe,Pelobacter acetylenicus sp. nov. , 1985, Archives of Microbiology.

[85]  J. Andreesen,et al.  Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum , 1977, Archives of Microbiology.

[86]  G. Sawers The hydrogenases and formate dehydrogenases ofEscherichia coli , 2004, Antonie van Leeuwenhoek.

[87]  A. Stams Metabolic interactions between anaerobic bacteria in methanogenic environments , 2004, Antonie van Leeuwenhoek.

[88]  S. Iwata,et al.  Formate dehydrogenase--a versatile enzyme in changing environments. , 2003, Current opinion in structural biology.

[89]  S. Iwata,et al.  Protonmotive force generation by a redox loop mechanism , 2003, FEBS letters.

[90]  Emile Schiltz,et al.  Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans. , 2003, European journal of biochemistry.

[91]  M. Lidstrom,et al.  The tungsten-containing formate dehydrogenase from Methylobacterium extorquens AM1: purification and properties. , 2003, European journal of biochemistry.

[92]  Daniel Lim,et al.  Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A , 2003, Nature Structural Biology.

[93]  M. Passeggi,et al.  Incorporation of either molybdenum or tungsten into formate dehydrogenase from Desulfovibrio alaskensis NCIMB 13491; EPR assignment of the proximal iron-sulfur cluster to the pterin cofactor in formate dehydrogenases from sulfate-reducing bacteria , 2003, JBIC Journal of Biological Inorganic Chemistry.

[94]  R. Huber,et al.  Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. , 2002, Structure.

[95]  A. Stams,et al.  Biochemical Evidence for Formate Transfer in Syntrophic Propionate-Oxidizing Cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei , 2002, Applied and Environmental Microbiology.

[96]  Jörg Simon,et al.  Enzymology and bioenergetics of respiratory nitrite ammonification. , 2002, FEMS microbiology reviews.

[97]  J. Vorholt,et al.  Generation of formate by the formyltransferase/hydrolase complex (Fhc) from Methylobacterium extorquens AM1 , 2002, FEBS letters.

[98]  Julia A. Vorholt,et al.  Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria , 2002, Archives of Microbiology.

[99]  R. Hille Molybdenum and tungsten in biology. , 2002, Trends in biochemical sciences.

[100]  J. Košmrlj,et al.  Variable-temperature nuclear magnetic resonance spectroscopy allows direct observation of carboxylate shift in zinc carboxylate complexes. , 2002, Journal of the American Chemical Society.

[101]  G. Sawers,et al.  PMF Through the Redox Loop , 2002, Science.

[102]  So Iwata,et al.  Molecular Basis of Proton Motive Force Generation: Structure of Formate Dehydrogenase-N , 2002, Science.

[103]  H. Sigel,et al.  Molybdenum and tungsten : their roles in biological processes , 2002 .

[104]  M. Adams,et al.  Tungsten-dependent aldehyde oxidoreductase: a new family of enzymes containing the pterin cofactor. , 2002, Metal ions in biological systems.

[105]  S. Iwata,et al.  Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli. , 2002, Acta crystallographica. Section D, Biological crystallography.

[106]  S. Spring,et al.  Isolation and Characterization of a Novel As(V)-Reducing Bacterium: Implications for Arsenic Mobilization and the Genus Desulfitobacterium , 2001, Applied and Environmental Microbiology.

[107]  K. Champion,et al.  Methanol toxicity and formate oxidation in NEUT2 mice. , 2001, Archives of biochemistry and biophysics.

[108]  M. Romão,et al.  Tungsten-containing formate dehydrogenase from Desulfovibrio gigas: metal identification and preliminary structural data by multi-wavelength crystallography , 2001, JBIC Journal of Biological Inorganic Chemistry.

[109]  G. Giordano,et al.  The coordination and function of the redox centres of the membrane-bound nitrate reductases , 2001, Cellular and Molecular Life Sciences CMLS.

[110]  B. Maden Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. , 2000, The Biochemical journal.

[111]  R. Prince,et al.  A Novel Protein-Bound Copper−Molybdenum Cluster , 2000 .

[112]  J. Charnock,et al.  Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site. , 2000, Journal of molecular biology.

[113]  M. Kula,et al.  Stabilization of NAD-dependent formate dehydrogenase from Candida boidinii by site-directed mutagenesis of cysteine residues. , 2000, European journal of biochemistry.

[114]  D. Richardson,et al.  Bacterial respiration: a flexible process for a changing environment. , 2000, Microbiology.

[115]  M. Saraste,et al.  FEBS Lett , 2000 .

[116]  B. Berks,et al.  Sec-independent Protein Translocation in Escherichia coli , 1999, The Journal of Biological Chemistry.

[117]  C. Brondino,et al.  Purification and characterization of a tungsten-containing formate dehydrogenase from Desulfovibrio gigas. , 1999, Biochemistry.

[118]  F. Guerlesquin,et al.  Mapping the cytochrome c 553 interacting site using 1H and 15N NMR , 1999, FEBS letters.

[119]  B. Bowien,et al.  Dual control by regulatory gene fdsR of the fds operon encoding the NAD+‐linked formate dehydrogenase of Ralstonia eutropha , 1999, Molecular microbiology.

[120]  A. Igamberdiev,et al.  Origins and metabolism of formate in higher plants , 1999 .

[121]  G. Giordano,et al.  Enzymatic and physiological properties of the tungsten‐substituted molybdenum TMAO reductase from Escherichia coli , 1999, Molecular microbiology.

[122]  C. Costa,et al.  OBSERVATION OF LIGAND-BASED REDOX CHEMISTRY AT THE ACTIVE SITE OF A MOLYBDENUM ENZYME , 1999 .

[123]  M. Mandrand-Berthelot,et al.  Topological Analysis of the Aerobic Membrane-Bound Formate Dehydrogenase of Escherichia coli , 1998, Journal of bacteriology.

[124]  Tobin,et al.  Heterogeneity of mitochondrial protein biogenesis during primary leaf development in barley , 1998, Plant physiology.

[125]  B. Bowien,et al.  Structural Analysis of the fds Operon Encoding the NAD+-linked Formate Dehydrogenase of Ralstonia eutropha * , 1998, The Journal of Biological Chemistry.

[126]  R. Thauer Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. , 1998, Microbiology.

[127]  B. Berks,et al.  Overlapping functions of components of a bacterial Sec‐independent protein export pathway , 1998, The EMBO journal.

[128]  M. Blackledge,et al.  Tyrosine 64 of cytochrome c553 is required for electron exchange with formate dehydrogenase in Desulfovibrio vulgaris Hildenborough. , 1998, Biochemistry.

[129]  F. Guerlesquin,et al.  The formate dehydrogenase-cytochrome c553 complex from Desulfovibrio vulgaris Hildenborough. , 1998, European journal of biochemistry.

[130]  J. Stubbe,et al.  Protein Radicals in Enzyme Catalysis. , 1998, Chemical reviews.

[131]  V. Gladyshev,et al.  Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer. , 1998, Biochemistry.

[132]  S. Mori,et al.  Formate dehydrogenase, an enzyme of anaerobic metabolism, is induced by iron deficiency in barley roots. , 1998, Plant physiology.

[133]  Moreau,et al.  Stress Induction of Mitochondrial Formate Dehydrogenase in Potato Leaves , 1998, Plant physiology.

[134]  C. Colangelo,et al.  X-ray Absorption Spectroscopy of the Molybdenum Site of Escherichia coli Formate Dehydrogenase , 1998 .

[135]  M. Quail,et al.  A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. , 1997, Microbiology.

[136]  G. Unden,et al.  Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. , 1997, Biochimica et biophysica acta.

[137]  R. Gross,et al.  Structure and function of a second gene cluster encoding the formate dehydrogenase of Wolinella succinogenes. , 1997, European journal of biochemistry.

[138]  B. Schink Energetics of syntrophic cooperation in methanogenic degradation , 1997, Microbiology and molecular biology reviews : MMBR.

[139]  C. Costa,et al.  Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: isolation and spectroscopic characterization of the active sites (heme, iron-sulfur centers and molybdenum) , 1997, JBIC Journal of Biological Inorganic Chemistry.

[140]  V. Gladyshev,et al.  Crystal Structure of Formate Dehydrogenase H: Catalysis Involving Mo, Molybdopterin, Selenocysteine, and an Fe4S4 Cluster , 1997, Science.

[141]  J. Reeve,et al.  Growth- and substrate-dependent transcription of the formate dehydrogenase (fdhCAB) operon in Methanobacterium thermoformicicum Z-245 , 1997, Journal of bacteriology.

[142]  F. Girio,et al.  The formate dehydrogenase isolated from the aerobe Methylobacterium sp. RXM is a molybdenum-containing protein. , 1997, Biochemical and biophysical research communications.

[143]  S. Ragsdale,et al.  The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won , 1997, BioFactors.

[144]  B. Berks A common export pathway for proteins binding complex redox cofactors? , 1996, Molecular microbiology.

[145]  V. V. Fedorchuk,et al.  Site‐directed mutagenesis of the formate dehydrogenase active centre: role of the His332‐Gln313 pair in enzyme catalysis , 1996, FEBS letters.

[146]  V. Gladyshev,et al.  Characterization of Crystalline Formate Dehydrogenase H from Escherichia coli , 1996, The Journal of Biological Chemistry.

[147]  M. Adams,et al.  Tungsten in biological systems. , 1996, FEMS microbiology reviews.

[148]  G. Giordano,et al.  Mandrand-berthelot Dehydrogenase. Physiological Role for Aerobic Formate Escherichia Coli Fdo Locus and a Possible Expression and Characterization of The , 1995 .

[149]  F. Guerlesquin,et al.  Purification and characterization of the formate dehydrogenase from Desulfovibrio vulgaris Hildenborough. , 1995, FEMS microbiology letters.

[150]  F. Mayer,et al.  Structural and immunological studies on the soluble formate dehydrogenase from Alcaligenes eutrophus. , 1995, Biological chemistry Hoppe-Seyler.

[151]  R. Hille,et al.  Xanthine oxidase and xanthine dehydrogenase , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[152]  M. Y. Liu,et al.  Isolation and preliminary characterization of a soluble nitrate reductase from the sulfate reducing organism Desulfovibrio desulfuricans ATCC 27774. , 1995, Anaerobe.

[153]  V S Lamzin,et al.  High resolution structures of holo and apo formate dehydrogenase. , 1995, Journal of molecular biology.

[154]  V. Gladyshev,et al.  Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[155]  Alfons J. M. Stams,et al.  Anaerobic Degradation of Propionate by a Mesophilic Acetogenic Bacterium in Coculture and Triculture with Different Methanogens , 1994, Applied and environmental microbiology.

[156]  V. Popov,et al.  NAD(+)-dependent formate dehydrogenase. , 1994, The Biochemical journal.

[157]  Heidi J. Sofia,et al.  Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes , 1993, Nucleic Acids Res..

[158]  B. Bowien,et al.  Physiological and biochemical characterization of the soluble formate dehydrogenase, a molybdoenzyme from Alcaligenes eutrophus , 1993, Journal of bacteriology.

[159]  E. Feytmans,et al.  Prediction of structurally conserved regions of D-specific hydroxy acid dehydrogenases by multiple alignment with formate dehydrogenase. , 1993, Biochemical and biophysical research communications.

[160]  G. Giordano,et al.  A second phenazine methosulphate-linked formate dehydrogenase isoenzyme in Escherichia coli. , 1992, Biochimica et biophysica acta.

[161]  J. Huet,et al.  Variation of the polypeptide composition of mitochondria isolated from different potato tissues. , 1992, Plant physiology.

[162]  J. Heider,et al.  Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. , 1991, The Journal of biological chemistry.

[163]  J. Lipscomb,et al.  Formate dehydrogenase from Methylosinus trichosporium OB3b. Purification and spectroscopic characterization of the cofactors. , 1991, The Journal of biological chemistry.

[164]  A. Böck,et al.  Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[165]  A. Böck,et al.  Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme , 1991, Journal of bacteriology.

[166]  A. Netrusov,et al.  Alternative NAD(+)-dependent formate dehydrogenases in the facultative methylotroph Mycobacterium vaccae 10. , 1991, FEMS microbiology letters.

[167]  W. Cleland,et al.  Secondary 15N isotope effects on the reactions catalyzed by alcohol and formate dehydrogenases. , 1991, Biochemistry.

[168]  J. Ferry,et al.  Identification of molybdopterin guanine dinucleotide in formate dehydrogenase from Methanobacterium formicicum. , 1991, FEMS microbiology letters.

[169]  E. Kojro,et al.  Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes , 1991, Archives of Microbiology.

[170]  T C Stadtman,et al.  Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. , 1990, The Journal of biological chemistry.

[171]  S. Eykyn Microbiology , 1950, The Lancet.

[172]  N. Kato Formate dehydrogenase from methylotrophic yeasts. , 1990, Methods in enzymology.

[173]  A. Egorov,et al.  Evidence for the presence of a new NAD+-dependent formate dehydrogenase in Pseudomonas sp. 101 cells grown on a molybdenum-containing medium. , 1989, FEMS microbiology letters.

[174]  D. Boone,et al.  Diffusion of the Interspecies Electron Carriers H2 and Formate in Methanogenic Ecosystems and Its Implications in the Measurement of Km for H2 or Formate Uptake , 1989, Applied and environmental microbiology.

[175]  J. Gregory Zeikus,et al.  Control of Interspecies Electron Flow during Anaerobic Digestion: Significance of Formate Transfer versus Hydrogen Transfer during Syntrophic Methanogenesis in Flocs , 1988, Applied and environmental microbiology.

[176]  C. Durfor,et al.  Electron paramagnetic resonance studies of the tungsten-containing formate dehydrogenase from Clostridiumthermoaceticum , 1987 .

[177]  J. Ferry,et al.  Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. , 1986, The Journal of biological chemistry.

[178]  A. Böck,et al.  Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[179]  J. Ferry,et al.  Composition of the coenzyme F420-dependent formate dehydrogenase from Methanobacterium formicicum , 1986, Journal of bacteriology.

[180]  T. Theophanides Metal ions in biological system , 1984 .

[181]  Bruce A. Parkinson,et al.  Photoelectrochemical pumping of enzymatic CO2 reduction , 1984, Nature.

[182]  J. Ferry,et al.  Formate dehydrogenase from Methanobacterium formicicum. Electron paramagnetic resonance spectroscopy of the molybdenum and iron-sulfur centers. , 1983, The Journal of biological chemistry.

[183]  L. Ljungdahl,et al.  Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. , 1983, The Journal of biological chemistry.

[184]  L. Barton,et al.  Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas , 1983, Journal of bacteriology.

[185]  J. Ferry,et al.  Properties of formate dehydrogenase in Methanobacterium formicicum , 1982 .

[186]  T. Höpner,et al.  Formate dehydrogenase from Pseudomonas oxalaticus. , 1978, Methods in enzymology.

[187]  D. J. Steenkamp,et al.  Proton translocation associated with nitrite respiration in Desulfovibrio desulfuricans. , 1981, The Journal of biological chemistry.

[188]  J. B. Jones,et al.  Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. , 1981, The Journal of biological chemistry.

[189]  H. Schlegel,et al.  Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. , 1981, Annual review of microbiology.

[190]  W. Cleland,et al.  Kinetic and chemical mechanisms of yeast formate dehydrogenase. , 1980, Biochemistry.

[191]  P. Garland,et al.  The mechanism of proton translocation driven by the respiratory nitrate reductase complex of Escherichia coli. , 1980, The Biochemical journal.

[192]  E. Winkler,et al.  The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. , 1980, Biochimica et biophysica acta.

[193]  J. B. Jones,et al.  Reconstitution of a formate-NADP+ oxidoreductase from formate dehydrogenase and a 5-deazaflavin-linked NADP+ reductase isolated from Methanococcus vannielii. , 1980, The Journal of biological chemistry.

[194]  C. Friedrich,et al.  Formate and Oxalate Metabolism in Alcaligenes eutrophus , 1979 .

[195]  T. Yagi Purification and properties of cytochrome c-553, an electron acceptor for formate dehydrogenase of Desulfovibrio vulgaris, Miyazaki. , 1979, Biochimica et biophysica acta.

[196]  R. Thauer,et al.  Purification and properties of reduced ferredoxin: CO2 oxidoreductase from Clostridium pasteurianum, a molybdenum iron-sulfur-protein. , 1978, European journal of biochemistry.

[197]  R. Thauer,et al.  Energy Conservation in Chemotrophic Anaerobic Bacteria , 1977, Bacteriological reviews.

[198]  R. Thauer,et al.  CHAPTER 5 – Role of Iron-Sulfur Proteins in Formate Metabolism , 1977 .

[199]  R. Wentworth,et al.  Tungsten vs. Molybdenum in models for biological systems. , 1977, Bioinorganic chemistry.

[200]  T. Höpner,et al.  CO2 reduction to formate by NADH catalysed by formate dehydrogenase from Pseudomonas oxalaticus. , 1976, European journal of biochemistry.

[201]  L. Ljungdahl,et al.  Tungsten, a component of active formate dehydrogenase from Clostridium thermoaceticum , 1975, FEBS letters.

[202]  R. Thauer,et al.  The active species of 'CO2' utilized by reduced ferredoxin:CO2 oxidoreductase from Clostridium pasteurianum. , 1975, European journal of biochemistry.

[203]  L. Ljungdahl,et al.  Nicotinamide Adenine Dinucleotide Phosphate-Dependent Formate Dehydrogenase from Clostridium thermoaceticum: Purification and Properties , 1974, Journal of bacteriology.

[204]  L. Ljungdahl,et al.  Formate Dehydrogenase of Clostridium thermoaceticum: Incorporation of Selenium-75, and the Effects of Selenite, Molybdate, and Tungstate on the Enzyme , 1973, Journal of bacteriology.

[205]  W. Lovenberg Iron-sulfur proteins, , 1973 .

[206]  R. Thauer CO2‐reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO2 in Clostridium thermoaceticum , 1972 .

[207]  L. Ljungdahl,et al.  Total synthesis of acetate from CO2 by heterotrophic bacteria. , 1969, Annual review of microbiology.

[208]  S C HARTMAN,et al.  Nucleic acids, purines, pyrimidines (nucleotide synthesis). , 1959, Annual review of biochemistry.

[209]  W. Sakami The conversion of formate and glycine to serine and glycogen in the intact rat. , 1948, The Journal of biological chemistry.

[210]  J. R.,et al.  Chemistry , 1929, Nature.