Structured Backward Errors and Pseudospectra of Structured Matrix Pencils

Structured backward perturbation analysis plays an important role in the accuracy assessment of computed eigenelements of structured eigenvalue problems. We undertake a detailed structured backward perturbation analysis of approximate eigenelements of linearly structured matrix pencils. The structures we consider include, for example, symmetric, skew-symmetric, Hermitian, skew-Hermitian, even, odd, palindromic, and Hamiltonian matrix pencils. We also analyze structured backward errors of approximate eigenvalues and structured pseudospectra of structured matrix pencils.

[1]  V. Mehrmann,et al.  Structured Jordan canonical forms for structured matrices that are hermitian, skew hermitian or unitary with respect to indefinite inner products , 1999 .

[2]  L. Trefethen Spectra and pseudospectra , 2005 .

[3]  Françoise Tisseur,et al.  Structured Mapping Problems for Matrices Associated with Scalar Products. Part I: Lie and Jordan Algebras , 2007, SIAM J. Matrix Anal. Appl..

[4]  David S. Watkins,et al.  POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .

[5]  Xin-Guo Liu,et al.  A note on the backward errors for Hermite eigenvalue problems , 2005, Appl. Math. Comput..

[6]  Nicholas J. Higham,et al.  Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..

[7]  Nicholas J. Higham,et al.  Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[8]  Volker Mehrmann,et al.  A Chart of Numerical Methods for Structured Eigenvalue Problems , 1992, SIAM J. Matrix Anal. Appl..

[9]  Françoise Tisseur,et al.  Stability of Structured Hamiltonian Eigensolvers , 2001, SIAM J. Matrix Anal. Appl..

[10]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[11]  Daniel Kressner,et al.  Structured Eigenvalue Condition Numbers , 2006, SIAM J. Matrix Anal. Appl..

[12]  Peter Benner,et al.  A NOTE ON THE NUMERICAL SOLUTION OF COMPLEX HAMILTONIAN AND SKEW-HAMILTONIAN EIGENVALUE PROBLEMS , 1999 .

[13]  Françoise Tisseur,et al.  Structured Factorizations in Scalar Product Spaces , 2005, SIAM J. Matrix Anal. Appl..

[14]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[15]  V. Mehrmann,et al.  Palindromic Polynomial Eigenvalue Problems:Good Vibrations from Good Linearizations , 2006 .

[16]  Volker Mehrmann,et al.  Vector Spaces of Linearizations for Matrix Polynomials , 2006, SIAM J. Matrix Anal. Appl..

[17]  SK. SAFIQUE AHMAD,et al.  On Pseudospectra, Critical Points, and Multiple Eigenvalues of Matrix Pencils , 2010, SIAM J. Matrix Anal. Appl..

[18]  S. Rump EIGENVALUES, PSEUDOSPECTRUM AND STRUCTURED PERTURBATIONS , 2006 .

[19]  Daniel Kressner,et al.  Structured Hölder Condition Numbers for Multiple Eigenvalues , 2009, SIAM J. Matrix Anal. Appl..

[20]  Wen-Wei Lin,et al.  Numerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods , 2002, SIAM J. Sci. Comput..

[21]  W. Kahan,et al.  NORM-PRESERVING DILATIONS AND THEIR APPLICATIONS TO OPTIMAL ERROR BOUNDS* , 1982 .

[22]  Shreemayee Bora,et al.  Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems Structured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems , 2022 .

[23]  Volker Mehrmann,et al.  Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..

[24]  Roland W. Freund,et al.  An extension of the positive real lemma to descriptor systems , 2004, Optim. Methods Softw..

[25]  Françoise Tisseur,et al.  A Chart of Backward Errors for Singly and Doubly Structured Eigenvalue Problems , 2002, SIAM J. Matrix Anal. Appl..