Identification of block-oriented nonlinear systems using orthonormal bases

In this paper, new noniterative algorithms for the identification of (multivariable) block-oriented nonlinear models consisting of the interconnection of linear time invariant systems and static nonlinearities are presented. The proposed algorithms are numerically robust, since they are based only on least squares estimation and singular value decomposition. Two different block-oriented nonlinear models are considered in this paper, viz., the Hammerstein model, and the Wiener model. For the Hammerstein model, the proposed algorithm provides consistent estimates even in the presence of colored output noise, under weak assumptions on the persistency of excitation of the inputs. For the Wiener model, consistency of the estimates can only be guaranteed in the noise free case. Key in the derivation of the results is the use of basis functions for the representation of the linear and nonlinear parts of the models. The performance of the proposed identification algorithms is illustrated through simulation examples of two benchmark problems drawn from the process control literature, viz., a binary distillation column and a pH neutralization process. � 2003 Elsevier Ltd. All rights reserved.

[1]  Jozsef Bokor,et al.  System identification with generalized orthonormal basis functions , 1995, Autom..

[2]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[3]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[4]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[5]  A. Palazoglu,et al.  Nolinear model predictive control using Hammerstein models , 1997 .

[6]  T. J. McAvoy,et al.  Feasibility of Decoupling in Conventionally Controlled Distillation Columns , 1980 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[11]  K. Poolla,et al.  New results for Hammerstein system identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[12]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[13]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[14]  Ahmet Palazoglu,et al.  Model predictive control based on Wiener models , 1998 .

[15]  Miroslaw Pawlak,et al.  Nonparametric identification of Hammerstein systems , 1989, IEEE Trans. Inf. Theory.

[16]  William L. Luyben,et al.  Plantwide Process Control , 1998 .

[17]  S. Billings,et al.  Identification of nonlinear systems using the Wiener model , 1977 .

[18]  Wallace E. Larimore,et al.  Canonical variate analysis in identification, filtering, and adaptive control , 1990, 29th IEEE Conference on Decision and Control.

[19]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..

[20]  Francis J. Doyle,et al.  Process Control Modules: A Software Laboratory for Control Design , 1999 .

[21]  Chun Tung Chou,et al.  Nonlinear Identification of High Purity Distillation Columns , 2000 .

[22]  Enrique Baeyens,et al.  2 Hammerstein Model Identification 2 . 1 Problem Formulation , 2001 .

[23]  W. R. Cluett,et al.  A new approach to the identification of pH processes based on the Wiener model , 1995 .

[24]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[25]  E. Bai An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998 .

[26]  H. Bloemen,et al.  Wiener Model Identification and Predictive Control for Dual Composition Control of a Distillation Column , 2001 .

[27]  T. Wigren Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model , 1994, IEEE Trans. Autom. Control..

[28]  Heinz Unbehauen,et al.  Structure identification of nonlinear dynamic systems - A survey on input/output approaches , 1990, Autom..

[29]  R. Pearson,et al.  Block‐oriented NARMAX models with output multiplicities , 1998 .

[30]  Steven C. Bass,et al.  Adaptive noise cancellation for a class of nonlinear, dynamic reference channels , 1985 .

[31]  P. Stoica On the convergence of an iterative algorithm used for Hammerstein system identification , 1981 .

[32]  E. Baeyens,et al.  Identification of multivariable Hammerstein systems using rational orthonormal bases , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[33]  Stephen A. Billings,et al.  Identi cation of a class of nonlinear systems using correlation analysis , 1978 .

[34]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[35]  B. Wahlberg System identification using Laguerre models , 1991 .

[36]  Lennart Ljung,et al.  Nonlinear Black Box Modeling in System Identification , 1995 .

[37]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[38]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[39]  Dale E. Seborg,et al.  Feedback linearizing control , 1997 .

[40]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[41]  Dale E. Seborg,et al.  Adaptive nonlinear control of a pH neutralization process , 1994, IEEE Trans. Control. Syst. Technol..

[42]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[43]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[44]  Bernard Delyon,et al.  Nonlinear black-box models in system identification: Mathematical foundations , 1995, Autom..

[45]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[46]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[47]  M. A. Henson,et al.  Nonlinear Adaptive Control of a pH Neutralization Process , 1992, 1992 American Control Conference.