A review of mixed-potential type zirconia-based gas sensors

A robust and reliable gas sensing device is considered as a convenient and practical solution for gas concentration monitoring that has become a mandatory requirement in different field of applications. For in situ hazardous gases detection, a mixed-potential type gas sensor has been regarded as a promising solid-state gas sensor. For the past three decades, there has been a significant progress in achieving high performance in mixed-potential type sensors. Therefore, this review is focused on reporting the development of mixed-potential type gas sensors with combined yttria-stabilized zirconia (YSZ) as the base solid electrolyte material and various classes of electrode materials for their potential utilization as a high-performance sensing electrode. The underlying sensing mechanism of a mixed-potential type YSZ-based sensor is elaborated here in detail. Transformation in design and configuration of this type of sensor is also covered in this report. In addition, recent progresses on mixed-potential type gas sensors development for detection of several target gases, such as carbon monoxide, hydrocarbons, nitrogen oxides, hydrogen, and ammonia, are reviewed. Strategies to improve the sensing characteristic, particularly gas sensitivity and selectivity, are also reported. Based on the understanding of the fundamental sensing mechanism and the requirements for high-performance gas sensors, challenges and future trends for this type of gas sensor development are discussed.

[1]  Norio Miura,et al.  Mixed potential type sensor using stabilized zirconia and ZnFe2O4 sensing electrode for NOx detection at high temperature , 2002 .

[2]  Norio Miura,et al.  Stabilized zirconia-based sensor utilizing SnO2-based sensing electrode with an integrated Cr2O3 catalyst layer for sensitive and selective detection of hydrogen , 2013 .

[3]  Norio Miura,et al.  Zirconia-based planar NO2 sensor using ultrathin NiO or laminated NiO–Au sensing electrode , 2008 .

[4]  N. Miura,et al.  Augmenting H2 sensing performance of YSZ-based electrochemical gas sensors via the application of Au mesh and YSZ coating , 2013 .

[5]  Maximilian Fleischer,et al.  Method for detection of NOx in exhaust gases by pulsed discharge measurements using standard zirconia-based lambda sensors , 2010 .

[6]  R. Mukundan,et al.  Mixed potential NOx sensors using thin film electrodes and electrolytes for stationary reciprocating engine type applications , 2006 .

[7]  P. Moseley,et al.  The use of an oxygen-ion conducting ceramic to probe reactions taking place on the surface of a semiconducting oxide , 1989 .

[8]  Cheryl Surman,et al.  Materials and transducers toward selective wireless gas sensing. , 2011, Chemical reviews.

[9]  V. Schüle,et al.  Non-Nernstian potentiometric zirconia sensors: screening of potential working electrode materials , 1993 .

[10]  E. Traversa,et al.  Propene Detection at High Temperatures Using Highly Sensitive Non-Nernstian Electrochemical Sensors Based on Nb and Ta Oxides , 2010 .

[11]  Norio Miura,et al.  Sensitive and Selective Zirconia-Based NO2 Sensor Using Gold Nanoparticle Coatings as Sensing Electrodes , 2008 .

[12]  N. Miura,et al.  Novel solid-state manganese oxide-based reference electrode for YSZ-based oxygen sensors , 2011 .

[13]  K. Kondo,et al.  Proton-Conducting Thin Film Grown on Yttria-Stabilized Zirconia Surface for Ammonia Gas Sensing Technologies , 2009 .

[14]  N. Miura,et al.  Improvement in Propene Sensing Characteristics by the Use of Additives to In2O3 Sensing Electrode of Mixed-Potential-Type Zirconia Sensor , 2009 .

[15]  P. Sekhar,et al.  Development and testing of a miniaturized hydrogen safety sensor prototype , 2010 .

[16]  Norio Miura,et al.  CO sensing characteristics of YSZ-based planar sensor using Rh-sensing electrode composed of tetrahedral sub-micron particles , 2011 .

[17]  T. Tan,et al.  An amperometric carbon monoxide sensor based on the steady-state difference response technique , 1995 .

[18]  Y. Sadaoka,et al.  VOC detection by potentiometric oxygen sensor based on YSZ and modified Pt electrodes , 2012 .

[19]  Norio Miura,et al.  Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2 , 2000 .

[20]  C. Park,et al.  Mixed potential NH3 sensor with LaCoO3 reference electrode , 2013 .

[21]  Norio Miura,et al.  Improvement of sensing performances of zirconia-based total NOx sensor by attachment of oxidation-catalyst electrode , 2004 .

[22]  Norio Miura,et al.  Selective detection of NO by using an amperometric sensor based on stabilized zirconia and oxide electrode , 1999 .

[23]  N. Miura,et al.  NO2 sensing properties of YSZ-based sensor using NiO and Cr-doped NiO sensing electrodes at high temperature , 2009 .

[24]  Vinay Gupta,et al.  Mechanochemical approach for fabrication of a nano-structured NiO-sensing electrode used in a zirconia-based NO2 sensor , 2010 .

[25]  Norio Miura,et al.  High-temperature NO or NO2 sensor using stabilized zirconia and tungsten oxide electrode , 1998 .

[26]  G. Lu,et al.  Sensing characteristics of a zirconia-based CO sensor made by thick-film lamination , 2001 .

[27]  E. Wachsman,et al.  Effect of La2CuO4 electrode area on potentiometric NOx sensor response and its implications on sensing mechanism , 2011 .

[28]  Norio Miura,et al.  Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases , 2000 .

[29]  G. Lu,et al.  Sub-ppm H2S sensor based on YSZ and hollow balls NiMn2O4 sensing electrode , 2014 .

[30]  William J. Fleming,et al.  Physical Principles Governing Nonideal Behavior of the Zirconia Oxygen Sensor , 1977 .

[31]  Masahiro Utiyama,et al.  Impedancemetric zirconia-based sensor attached with laminated-oxide sensing-electrode aiming at highly sensitive and selective detection of propene in atmospheric air , 2010 .

[32]  M. Nagano,et al.  Gas sensing properties of a stabilized zirconia-based sensor with a porous MoO3 electrode prepared from a molybdenum polyoxometallate–alkylamine hybrid film , 2006 .

[33]  Eric D. Wachsman,et al.  Isotopically labeled oxygen studies of the NOx exchange behavior of La2CuO4 to determine potentiometric sensor response mechanism , 2008 .

[34]  M. Sano,et al.  High-temperature hydrocarbon sensors based on a stabilized zirconia electrolyte and proton conductor-containing platinum electrode , 2001 .

[35]  S. Cordiner,et al.  Planar non-nernstian electrochemical sensors: field test in the exhaust of a spark ignition engine , 2005 .

[36]  Il-Doo Kim,et al.  Advances and new directions in gas-sensing devices , 2013 .

[37]  Norio Miura,et al.  Development of zirconia-based potentiometric NOx sensors for automotive and energy industries in the early 21st century : What are the prospects for sensors? , 2007 .

[38]  S. Phanichphant,et al.  Semiconducting metal oxides as sensors for environmentally hazardous gases , 2011 .

[39]  Yuehuan Li,et al.  A planar, impedancemetric NO2 sensor based on NiO nanoparticles sensing electrode , 2012 .

[40]  Robert F. Novak,et al.  Diesel engine dynamometer testing of impedancemetric NOx sensors , 2010 .

[41]  A. Berg,et al.  Ammonia sensors and their applications - a review , 2005 .

[42]  R. Hartung,et al.  Possibilities of NOx and CHx determination using galvanic cells with perovskite-electrodes on YSZ , 1996 .

[43]  G. Lu,et al.  Mixed-potential type NOx sensor using stabilized zirconia and Cr2O3-WO3 nanocomposites , 2013, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[44]  N. Yamazoe,et al.  A Four‐Probe Type Gas Sensor Using a Solid‐State Proton Conductor Sensitive to Hydrogen at Room Temperature , 1987 .

[45]  T. Hibino,et al.  NOx detection using the electrolysis of water vapor in a YSZ cell : Part II. Electrochemical oxygen pump , 1998 .

[46]  G. Kale,et al.  Novel high-selectivity NO2 sensor incorporating mixed-oxide electrode , 2006 .

[47]  N. Miura,et al.  Stabilized zirconia-based planar sensor using coupled oxide(+Au) electrodes for highly selective CO detection , 2011 .

[48]  Norio Miura,et al.  Mixed-potential-type NOx sensor based on YSZ and zinc oxide sensing electrode , 2004 .

[49]  Norio Miura,et al.  Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature , 2005 .

[50]  Jens Zosel,et al.  Selectivity of HC-sensitive electrode materials for mixed potential gas sensors , 2004 .

[51]  Maximilian Fleischer,et al.  Selective Mixed Potential Ammonia Exhaust Gas Sensor , 2009 .

[52]  D. Westphal,et al.  Gold-composite electrodes for hydrocarbon sensors based on YSZ solid electrolyte , 2001 .

[53]  N. Yamazoe,et al.  Development of new chemical sensors based on low-temperature proton conductors , 1992 .

[54]  N. Miura,et al.  Reduction in Ethanol Interference of Zirconia-Based Sensor for Selective Detection of Volatile Organic Compounds , 2013 .

[55]  Jens Zosel,et al.  Mixed potential gas sensor with short response time , 2008 .

[56]  Johann Riegel,et al.  Exhaust gas sensors for automotive emission control , 2002 .

[57]  N. Miura,et al.  Mixed-potential-type Zirconia-based Sensor Using In2O3 Sensing-Electrode for Selective Detection of Methane at High Temperature , 2008 .

[58]  Robert S. Glass,et al.  Hydrogen Sensor Based on YSZ Electrolyte and Tin-Doped Indium Oxide Electrode , 2005 .

[59]  Giang Hồng Thái,et al.  High sensitivity and selectivity of mixed potential sensor based on Pt/YSZ/SmFeO3 to NO2 gas , 2013 .

[60]  T. Inaba,et al.  Characteristics of an HC sensor using a Pr6O11 electrode , 2005 .

[61]  H. Okamoto,et al.  Interpretation of the electromotive forces of solid electrolyte concentration cells during carbon monoxide oxidation on platinum , 1983 .

[62]  Chonghoon Lee,et al.  Sensing behavior and mechanism of mixed potential NOx sensors using NiO, NiO(+YSZ) and CuO oxide electrodes , 2009 .

[63]  Rangachary Mukundan,et al.  Solid-state mixed potential gas sensors: theory, experiments and challenges , 2000 .

[64]  N. Miura,et al.  The synthesis and gas sensitivity of CuO micro-dimensional structures featuring a stepped morphology , 2012 .

[65]  P. Moseley,et al.  Solid state gas sensors , 1997 .

[66]  Daniela Schönauer-Kamin,et al.  Half-Cell Potential Analysis of an Ammonia Sensor with the Electrochemical Cell Au | YSZ | Au, V2O5-WO3-TiO2 , 2013, Sensors.

[67]  D. Narducci,et al.  CO determination in air by YSZ-based sensors , 1994 .

[68]  N. Miura,et al.  Sensing characteristics of aged zirconia-based hydrogen sensor utilizing Zn–Ta-based oxide sensing-electrode , 2013 .

[69]  N. Miura,et al.  Sensing characteristics of mixed-potential-type zirconia-based sensor using laminated-oxide sensing electrode , 2008 .

[70]  P. Sekhar,et al.  Impedance spectroscopy based characterization of an electrochemical propylene sensor , 2013 .

[71]  E. Wachsman,et al.  Effect of nanocomposite Au–YSZ electrodes on potentiometric sensor response to NOx and CO☆ , 2013 .

[72]  Jian Wang,et al.  High-temperature operating characteristics of mixed-potential-type NO2 sensor based on stabilized-zirconia tube and NiO sensing electrode , 2006 .

[73]  C. Yeh,et al.  Nanogold on powdered cobalt oxide for carbon monoxide sensor , 2003 .

[74]  Jens Zosel,et al.  Perovskite related electrode materials with enhanced NO sensitivity for mixed potential sensors , 2008 .

[75]  N. Miura,et al.  Tunable NO2-Sensing Characteristics of YSZ-Based Mixed-Potential-Type Sensor Using Ni1 − x Co x O -Sensing Electrode , 2009 .

[76]  J. Viricelle,et al.  Improvement of the NOx selectivity for a planar YSZ sensor , 2009 .

[77]  N. Miura,et al.  Construction of sensitive and selective zirconia-based CO sensors using ZnCr2O(4)-based sensing electrodes. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[78]  Norio Miura,et al.  Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes , 1998 .

[79]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[80]  S. Zhuiykov Electrochemistry of Zirconia Gas Sensors , 2007 .

[81]  Norio Miura,et al.  Sensing characteristics and mechanisms of hydrogen sulfide sensor using stabilized zirconia and oxide sensing electrode , 1996 .

[82]  Prabir K. Dutta,et al.  High temperature amperometric total NOx sensors with platinum-loaded zeolite Y electrodes , 2007 .

[83]  G. Lu,et al.  The effects of sintering temperature of MnCr2O4 nanocomposite on the NO2 sensing property for YSZ-based potentiometric sensor , 2013 .

[84]  Y. Sadaoka,et al.  Potentiometric VOC detection at sub-ppm levels based on YSZ electrolyte and platinum electrode covered with gold , 2010 .

[85]  P. Tsiakaras,et al.  Electrodes for solid electrolyte sensors for the measurement of CO and H2 content in air , 2013 .

[86]  P. Sekhar,et al.  Effect of perovskite electrode composition on mixed potential sensor response , 2013 .

[87]  Taro Ueda,et al.  Zirconia-based amperometric sensor using La-Sr-based perovskite-type oxide sensing electrode for detection of NO2 , 2009 .

[88]  Norio Miura,et al.  Mixed-potential-type propylene sensor based on stabilized zirconia and oxide electrode , 2000 .

[89]  M. Sano,et al.  Zirconia-Based Potentiometric Sensors Using Metal Oxide Electrodes for Detection of Hydrocarbons , 2001 .

[90]  Junichiro Mizusaki,et al.  Detection of carbon monoxide by using zirconia oxygen sensor , 1995 .

[91]  Fengmin Liu,et al.  Highly sensitive mixed-potential-type NO2 sensor using porous double-layer YSZ substrate , 2013 .

[92]  Rangachary Mukundan,et al.  Application of commercial automotive sensor manufacturing methods for NOx/NH3 mixed potential sensors for on-board emissions control , 2010 .

[93]  R. Glass,et al.  Effect of Cr2O3 electrode morphology on the nitric oxide response of a stabilized zirconia sensor , 2003 .

[94]  N. Miura,et al.  Working Mechanism of Novel Mn-Based Reference Electrode for Solid-State Electrochemical Gas Sensors , 2012 .

[95]  E. Wachsman,et al.  The effect of La2CuO4 sensing electrode thickness on a potentiometric NOx sensor response , 2011 .

[96]  G. Lu,et al.  Mixed-potential-type zirconia-based NO2 sensor with high-performance three-phase boundary , 2011 .

[97]  N. Miura,et al.  Selective hydrogen detection at high temperature by using yttria-stabilized zirconia-based sensor with coupled metal-oxide-based sensing electrodes , 2012 .

[98]  U. Guth,et al.  Chemical modifications of au-electrodes on YSZ and their influence on the non-Nernstian behaviour , 1996 .

[99]  U. Guth,et al.  Electrochemical investigations on multi-metallic electrodes for amperometric NO gas sensors , 2005 .

[100]  R. Mukundan,et al.  Solid state ionic devices for combustion gas sensing , 2004 .

[101]  Takashi Hibino,et al.  Detection of propylene under oxidizing conditions using zirconia-based potentiometric sensor , 1998 .

[102]  N. Miura,et al.  Sensing Characteristics of YSZ-Based Mixed-Potential-Type Planar NO x Sensors Using NiO Sensing Electrodes Sintered at Different Temperatures , 2005 .

[103]  Daisuke Terada,et al.  Mixed-potential-type zirconia-based NOx sensor using Rh-loaded NiO sensing electrode operating at high temperatures , 2006 .

[104]  E. Traversa,et al.  Detection of sub-ppm level of VOCs based on a Pt/YSZ/Pt potentiometric oxygen sensor with reference air , 2009 .

[105]  Jens Zosel,et al.  Electrode materials for potentiometric hydrogen sensors , 2006 .

[106]  T. Tan,et al.  Characteristics and Modeling of A Solid State Hydrogen Sensor , 1994 .

[107]  H. Okamoto,et al.  Non-ideal emf behavior of zirconia oxygen sensors , 1981 .

[108]  U. Guth,et al.  YSZ-cells for potentiometric nitric oxide sensors , 2003 .

[109]  Girish M. Kale,et al.  Influence of sensing electrode and electrolyte on performance of potentiometric mixed-potential gas sensors , 2007 .

[110]  N. Miura,et al.  Highly sensitive and selective stabilized zirconia-based mixed-potential-type propene sensor using NiO/Au composite sensing-electrode , 2010 .

[111]  Maria Luisa Grilli,et al.  Nano-structured perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layers , 2004 .

[112]  T. Tan,et al.  High‐Temperature Carbon Monoxide Potentiometric Sensor , 1993 .

[113]  M. Sano,et al.  High‐Temperature Hydrocarbon Sensors Based on a Stabilized Zirconia Electrolyte and Metal Oxide Electrodes , 1999 .

[114]  Norio Miura,et al.  Stabilized zirconia-based sensor using oxide electrode for detection of NOx in high-temperature combustion-exhausts , 1996 .

[115]  E. Traversa,et al.  High temperature detection of CO/HCs gases by non-Nernstian planar sensors using Nb2O5 electrode , 2008 .

[116]  Eric D. Wachsman,et al.  Highly Sensitive/Selective Miniature Potentiometric Carbon Monoxide Gas Sensors with Titania‐Based Sensing Elements , 2010 .

[117]  Yu Lei,et al.  Pt-CeO2 nanofibers based high-frequency impedancemetric gas sensor for selective CO and C3H8 detection in high-temperature harsh environment , 2013 .

[118]  Tetsuichi Kudo,et al.  Carbon monoxide gas sensor made of stabilized zirconia , 1980 .

[119]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[120]  Norio Miura,et al.  Solid-state electrochemical gas sensors , 2009 .

[121]  Jeffrey W. Fergus A review of electrolyte and electrode materials for high temperature electrochemical CO2 and SO2 gas sensors , 2008 .

[122]  Takashi Hibino,et al.  Non‐Nernstian Behavior at Modified Au Electrodes for Hydrocarbon Gas Sensing , 1999 .

[123]  Giorgio Sberveglieri,et al.  Solid state gas sensing , 2009 .

[124]  Norio Miura,et al.  Potentiometric NOx sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures , 2001 .

[125]  N. Miura,et al.  C3H6 sensing characteristics of rod-type yttria-stabilized zirconia-based sensor for ppb level environmental monitoring applications , 2012 .

[126]  A. Cirera,et al.  Role of nanostructured WO3 in ion-conducting sensors for the detection of NOx in exhaust gases from lean combustion engines , 2011 .

[127]  P. Sekhar,et al.  Effect of yttria-stabilized zirconia sintering temperature on mixed potential sensor performance , 2010 .

[128]  Maria Luisa Grilli,et al.  Sensing Mechanism of Potentiometric Gas Sensors Based on Stabilized Zirconia with Oxide Electrodes Is It Always Mixed Potential , 2004 .

[129]  Jeffrey W. Fergus,et al.  Solid electrolyte based sensors for the measurement of CO and hydrocarbon gases , 2007 .

[130]  N. Miura,et al.  Insight into the aging effect on enhancement of hydrogen-sensing characteristics of a zirconia-based sensor utilizing a Zn-Ta-O-based sensing electrode. , 2013, ACS applied materials & interfaces.

[131]  Norio Miura,et al.  High-temperature sensors for NO and NO2 based onstabilized zirconiaand spinel-type oxide electrodes , 1997 .

[132]  Norio Miura,et al.  Zirconia-based electrochemical gas sensors using nano-structured sensing materials aiming at detection of automotive exhausts , 2009 .

[133]  E. Traversa,et al.  Study of YSZ-Based Electrochemical Sensors with WO 3 Electrodes in NO 2 and CO Environments , 2003 .

[134]  N. Yamazoe,et al.  An improved type of proton conductor sensor sensitive to H2 and CO at room temperature , 1983 .

[135]  Xishuang Liang,et al.  Ammonia sensors based on stabilized zirconia and CoWO4 sensing electrode , 2012 .

[136]  Masahiro Utiyama,et al.  Potentiometric YSZ-based sensor using NiO sensing electrode aiming at detection of volatile organic compounds (VOCs) in air environment , 2010 .

[137]  R. Mukundan,et al.  Mixed Potential Hydrocarbon Sensors based on a YSZ Electrolyte and Oxide Electrodes , 2003 .

[138]  N. Miura,et al.  Spontaneous gradual accumulation of hexagonally-aligned nano-silica on gold nanoparticles embedded in stabilized zirconia: a pathway from catalytic to NH3-sensing performance. , 2011, Nanoscale.

[139]  Jing Wang,et al.  Novel Zn–M–O (M = Sn, Co) sensing electrodes for selective mixed potential CO/C3H8 sensors , 2013 .

[140]  Prabir K. Dutta,et al.  Promoting selectivity and sensitivity for a high temperature YSZ-based electrochemical total NOx sensor by using a Pt-loaded zeolite Y filter , 2007 .

[141]  Maria Luisa Grilli,et al.  Non-Nernstian planar sensors based on YSZ with a Nb2O5 electrode , 2008 .

[142]  Kenichi Shimizu,et al.  Effects of Calcination Temperature and Acid-Base Properties on Mixed Potential Ammonia Sensors Modified by Metal Oxides , 2011, Sensors.

[143]  Norio Miura,et al.  Sensing Performances of Mixed-potential Type NO x Sensor Attached with Oxidation-catalyst Electrode , 2003 .

[144]  D. R. Brown,et al.  Mixed potential sensors using lanthanum manganate and terbium yttrium zirconium oxide electrodes , 2002 .

[145]  P. Dutta,et al.  Correlation of sensing behavior of mixed potential sensors with chemical and electrochemical properties of electrodes , 2004 .

[146]  N. Yamazoe,et al.  DETECTION OF COMBUSTIBLE GASES WITH STABILIZED ZIRCONIA SENSOR , 1978 .

[147]  Norio Miura,et al.  High-temperature NOx sensors using zirconia solid electrolyte and zinc-family oxide sensing electrode , 2002 .

[148]  D. R. Brown,et al.  CO/HC sensors based on thin films of LaCoO3 and La0.8Sr0.2CoO3−δ metal oxides , 2000 .

[149]  E. Llobet Gas sensors using carbon nanomaterials: A review , 2013 .

[150]  Norio Miura,et al.  High-temperature hydrogen sensor based on stabilized zirconia and a metal oxide electrode , 1996 .

[151]  Norio Miura,et al.  Stabilization of sensing performance for mixed-potential-type zirconia-based hydrocarbon sensor. , 2011, Talanta.

[152]  Norio Miura,et al.  Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature , 2003 .

[153]  Norio Miura,et al.  Stabilized Zirconia-Based Sensor Attached with NiO ∕ Au Sensing Electrode Aiming for Highly Selective Detection of Ammonia in Automobile Exhausts , 2008 .

[154]  David E. Williams,et al.  Tin dioxide gas sensors. Part 3.—Solid-state electrochemical investigations of reactions taking place at the oxide surface , 1989 .

[155]  N. Miura,et al.  Zirconia-Based Sensor Using ZnCr2O4 Sensing Electrode for Measurement of Total Concentration of Various Hydrocarbons , 2008 .

[156]  Masahiro Utiyama,et al.  YSZ-based Sensor Using NiO Sensing Electrode for Detection of Volatile Organic Compounds in ppb Level , 2011 .

[157]  N. Miura,et al.  Effect of Sintering Temperature on Hydrogen Sensing Characteristics of Zirconia Sensor Utilizing Zn-Ta-O-Based Sensing Electrode , 2013 .

[159]  N. Yamazoe,et al.  Mixed Potential Hydrogen Sensor Combining Oxide Ion Conductor with Oxide Electrode , 1996 .

[160]  Maria Luisa Grilli,et al.  Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes , 2004 .

[161]  Robert S. Glass,et al.  Electrochemical Hydrogen Sensor for Safety Monitoring , 2004 .

[162]  T. Kawano,et al.  A highly selective CO sensor: screening of electrode materials , 1996 .

[163]  Norio Miura,et al.  Mixed potential type NO{sub x} sensor based on stabilized zirconia and oxide electrode , 1996 .

[164]  Takashi Kawano,et al.  A highly selective CO sensor using LaMnO3 electrode-attached zirconia galvanic cell , 1997 .

[165]  Masami Mori,et al.  Potentiometric VOC detection in air using 8YSZ-based oxygen sensor modified with SmFeO3 catalytic layer , 2009 .

[166]  Guido Busca,et al.  Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review , 1998 .

[167]  Frank Willems,et al.  Ammonia sensor for closed-loop SCR control , 2008 .

[168]  Jens Zosel,et al.  Au–oxide composites as HC-sensitive electrode material for mixed potential gas sensors , 2002 .