Unraveling the combined actions of a Holling type III predator-prey model incorporating Allee response and memory effects

[1]  Eduardo González-Olivares,et al.  Optimal harvesting in a predator–prey model with Allee effect and sigmoid functional response , 2012 .

[2]  Yongguang Yu,et al.  Stability and Bifurcation of Two Kinds of Three-Dimensional Fractional Lotka-Volterra Systems , 2014 .

[3]  Hongyong Zhao,et al.  The effect of vaccines on backward bifurcation in a fractional order HIV model , 2015 .

[4]  Ying Guo The Stability of Solutions for a Fractional Predator-Prey System , 2014 .

[5]  Ranchao Wu,et al.  Hopf bifurcation analysis of a new commensurate fractional-order hyperchaotic system , 2014 .

[6]  Adem Kilicman,et al.  Fractional Calculus and Its Applications in Applied Mathematics and Other Sciences , 2014 .

[7]  Malay Banerjee,et al.  Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect , 2012 .

[8]  Brian Dennis,et al.  ALLEE EFFECTS: POPULATION GROWTH, CRITICAL DENSITY, AND THE CHANCE OF EXTINCTION , 1989 .

[9]  V. Uchaikin Fractional Derivatives for Physicists and Engineers , 2013 .

[10]  M. Ichise,et al.  An analog simulation of non-integer order transfer functions for analysis of electrode processes , 1971 .

[11]  P. Kareiva,et al.  Allee Dynamics and the Spread of Invading Organisms , 1993 .

[12]  R. Feynman,et al.  RECENT APPLICATIONS OF FRACTIONAL CALCULUS TO SCIENCE AND ENGINEERING , 2003 .

[13]  Grenfell,et al.  Inverse density dependence and the Allee effect. , 1999, Trends in ecology & evolution.

[14]  N. Azimi-Tafreshi,et al.  Memory effects on epidemic evolution: The susceptible-infected-recovered epidemic model , 2017, Physical review. E.

[15]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[16]  P. Chakraborty,et al.  Stability and bifurcation analysis of a discrete prey–predator model with sigmoid functional response and Allee effect , 2020, Rendiconti del Circolo Matematico di Palermo Series 2.

[17]  Javad Alidousti,et al.  Stability and dynamics of a fractional order Leslie-Gower prey-predator model , 2016 .

[18]  Nemat Nyamoradi,et al.  Dynamic analysis of a fractional order prey–predator interaction with harvesting , 2013 .

[19]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[20]  Zhidong Teng,et al.  Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge , 2016, Journal of Applied Mathematics and Computing.

[21]  Adem Kilicman,et al.  A Fractional-Order Predator–Prey Model with Ratio-Dependent Functional Response and Linear Harvesting , 2019, Mathematics.

[22]  Ahmed M. A. El-Sayed,et al.  On the fractional-order logistic equation , 2007, Appl. Math. Lett..

[23]  J. Gascoigne,et al.  Allee Effects in Ecology and Conservation , 2008 .

[24]  Eduardo González-Olivares,et al.  Multiple Limit Cycles in a Gause Type Predator–Prey Model with Holling Type III Functional Response and Allee Effect on Prey , 2011, Bulletin of mathematical biology.