A Compact Integration of a 77 GHz FMCW Radar System Using CMOS Transmitter and Receiver Adopting On-Chip Monopole Feeder

This paper presents 77-GHz CMOS radar transmitter and receiver chips equipped with monopole feeders for use in frequency-modulated continuous-wave radar systems. The on-chip monopole feeder can feed not only the aperture of waveguides but also the slots on planar circuits by simply attaching the chips to a printed circuit board using a low-cost non-conductive epoxy. With the aid of a high ratio multiplier and the proposed on-chip feeder, a radar system can easily be integrated without needing to use precise and expensive millimeter-wave packaging technologies. In order to experimentally confirm this, the chips integrated with waveguides are first measured and a full radar system integrated on the planar circuit is evaluated using the microstrip patch antennas. Finally, with the benefit of compact integration technology, the design of a five-channel 3-D environmental sensing radar for small-unmanned aerial vehicles is presented.

[1]  T. Chu,et al.  An Nth-harmonic oscillator using an N-push coupled oscillator array with voltage-clamping circuits , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[2]  T. Gaier,et al.  A Submillimeter-Wave HEMT Amplifier Module With Integrated Waveguide Transitions Operating Above 300 GHz , 2008, IEEE Transactions on Microwave Theory and Techniques.

[3]  J. Wenger,et al.  Automotive radar - status and perspectives , 2005, IEEE Compound Semiconductor Integrated Circuit Symposium, 2005. CSIC '05..

[4]  Jri Lee,et al.  A 94 GHz 3D Image Radar Engine With 4TX/4RX Beamforming Scan Technique in 65 nm CMOS Technology , 2015, IEEE Journal of Solid-State Circuits.

[5]  W. Heinrich,et al.  Flip-Chip Interconnects for 250 GHz Modules , 2015, IEEE Microwave and Wireless Components Letters.

[6]  Linda P. B. Katehi,et al.  Broadband vertical interconnects using slot-coupled shielded microstrip lines , 1992 .

[7]  T. Zwick,et al.  Millimeter-Wave Technology for Automotive Radar Sensors in the 77 GHz Frequency Band , 2012, IEEE Transactions on Microwave Theory and Techniques.

[8]  Po-Hsin Liu,et al.  A 10-mW Submillimeter-Wave Solid-State Power-Amplifier Module , 2010, IEEE Transactions on Microwave Theory and Techniques.

[9]  Sangwook Nam,et al.  A 77-GHz FMCW Radar System Using On-Chip Waveguide Feeders in 65-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[10]  Jae-Sung Rieh,et al.  RF characterization and modeling of various wire bond transitions , 2005, IEEE Transactions on Advanced Packaging.

[11]  Jri Lee,et al.  $W$ -Band BPSK and QPSK Transceivers With Costas-Loop Carrier Recovery in 65-nm CMOS Technology , 2011, IEEE Journal of Solid-State Circuits.

[12]  I. Gresham,et al.  A compact manufacturable 76-77-GHz radar module for commercial ACC applications , 2001 .

[13]  N. Mazor,et al.  Analysis and design of an X-band-to-W-band CMOS active multiplier with improved harmonic rejection , 2013, IEEE Transactions on Microwave Theory and Techniques.

[14]  André Bourdoux,et al.  A 79-GHz 2 × 2 MIMO PMCW Radar SoC in 28-nm CMOS , 2017, IEEE J. Solid State Circuits.

[16]  Arnulf Leuther,et al.  ${W}$ -Band Time-Domain Multiplexing FMCW MIMO Radar for Far-Field 3-D Imaging , 2017, IEEE Transactions on Microwave Theory and Techniques.

[17]  Christian Waldschmidt,et al.  Ultracompact 160-GHz FMCW Radar MMIC With Fully Integrated Offset Synthesizer , 2017, IEEE Transactions on Microwave Theory and Techniques.

[18]  Matthew J. Rutherford,et al.  Radar-based detection and identification for miniature air vehicles , 2011, 2011 IEEE International Conference on Control Applications (CCA).

[19]  Maciej Wojnowski,et al.  A Highly Integrated 60 GHz 6-Channel Transceiver With Antenna in Package for Smart Sensing and Short-Range Communications , 2016, IEEE Journal of Solid-State Circuits.

[20]  I. Seto,et al.  A 77 GHz 90 nm CMOS Transceiver for FMCW Radar Applications , 2010, IEEE Journal of Solid-State Circuits.

[21]  Huey-Ru Chuang,et al.  A Fully Integrated 60-GHz CMOS Direct-Conversion Doppler Radar RF Sensor With Clutter Canceller for Single-Antenna Noncontact Human Vital-Signs Detection , 2016, IEEE Transactions on Microwave Theory and Techniques.

[22]  Xiaojun Yuan,et al.  A 60-GHz OOK Receiver With an On-Chip Antenna in 90 nm CMOS , 2010, IEEE Journal of Solid-State Circuits.

[23]  Matthew J. Rutherford,et al.  UAV-borne X-band radar for collision avoidance , 2013, Robotica.

[24]  K. Chang,et al.  Slot-coupled double-sided microstrip interconnects and couplers , 1993, IEEE MTT-S International Microwave Symposium Digest.

[25]  Jri Lee,et al.  A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[26]  Tobias Klein,et al.  Small and light 24 GHz multi-channel radar , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[27]  W. Heinrich,et al.  Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz , 2001 .

[28]  Roberto Sorrentino,et al.  Modeling and characterization of the bonding-wire interconnection , 2001 .

[29]  Kenichi Okada,et al.  A 60GHz CMOS power amplifier using capacitive cross-coupling neutralization with 16 % PAE , 2011, 2011 6th European Microwave Integrated Circuit Conference.

[30]  T. Zwick,et al.  Design and measurement of matched wire bond and flip chip interconnects for D-band system-in-package applications , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[31]  Eric Kerherve,et al.  RF-pad, Transmission Lines and balun optimization for 60GHz 65nm CMOS Power Amplifier , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[32]  N. Dib,et al.  Analysis of slot-coupled transitions from microstrip-to-microstrip and microstrip-to-waveguides , 1997 .

[33]  Munkyo Seo,et al.  A W-Band Signal Generation Using N-Push Frequency Multipliers for Low Phase Noise , 2014, IEEE Microwave and Wireless Components Letters.

[34]  Shuai Yuan,et al.  Compact 120–140 GHz radar Tx/Rx sensors with on-chip antenna , 2014, 2014 IEEE Radio and Wireless Symposium (RWS).