Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition.

We report the fabrication and characterization of CdS/TiO(2) nanotube-array coaxial heterogeneous structures. Such structures may potentially be applied in various photocatalytic fields, such as water photocatalytic decomposition and toxic pollutant photocatalytic degradation. Thin films of CdS are conformally deposited onto TiO(2) nanotubes using a modified method of electrochemical atomic layer deposition. We propose that such nanostructured electrodes can overcome the poor absorption and high charge-carrier recombination observed with nanoparticulate films. The practical electrochemical deposition technique promotes the deposition of CdS onto the TiO(2) tube walls while minimizing deposition at the tube entrances, thus preventing pore clogging. The coaxial heterogeneous structure prepared by the new electrochemical process significantly enhances CdS/TiO(2) and CdS/electrolyte contact areas and reduces the distance that holes and electrons must travel to reach the electrolyte or underlying conducting substrate. This results in enhanced photon absorption and photocurrent generation. The detailed synthesis process and the surface morphology, structure, elemental analysis, and photoelectrochemical properties of the resulting films with the CdS/TiO(2) nanotube-array coaxial heterogeneous structure are discussed. In comparison with a pure TiO(2) nanotube array, a 5-fold enhancement in photoactivity was observed using the coaxial heterogeneous structure. This methodology may be useful in designing multijunction semiconductor materials for coating of highly structured substrates.

[1]  Yanbiao Liu,et al.  A new glass substrate photoelectrocatalytic electrode for efficient visible-light hydrogen production: CdS sensitized TiO2 nanotube arrays , 2010 .

[2]  Jong Hyeok Park,et al.  CdS or CdSe decorated TiO2 nanotube arrays from spray pyrolysis deposition: use in photoelectrochemical cells. , 2010, Chemical communications.

[3]  J. Stickney,et al.  Aqueous electrodeposition of Ge monolayers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[4]  F. Vizza,et al.  Confined electrodeposition of CdS in the holes left by the selective desorption of 3-mercapto-1-propionic acid from a binary self-assembled monolayer formed with 1-octanethiol. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[5]  S. Caporali,et al.  Nickel sulfur thin films deposited by ECALE: Electrochemical, XPS and AFM characterization , 2010 .

[6]  Ü. Demir,et al.  Preparation of PbS thin films: A new electrochemical route for underpotential deposition , 2009 .

[7]  M. A. Khan,et al.  Photocatalytic water splitting for hydrogen production under visible light on Ir and Co ionized titania nanotube , 2009 .

[8]  Ümit Demir,et al.  Synthesis and characterization of Sb2Te3 nanofilms via electrochemical co-deposition method , 2009 .

[9]  J. Stickney,et al.  Copper Nanofilm Formation by Electrochemical ALD , 2009 .

[10]  F. Bülbül,et al.  Characterization of size-quantized PbTe thin films synthesized by an electrochemical co-deposition method , 2009 .

[11]  Mano Misra,et al.  Vertically oriented TiO2 nanotube arrays grown on Ti meshes for flexible dye-sensitized solar cells , 2009 .

[12]  Nageh K. Allam,et al.  Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays: photoelectrochemical properties. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  M. Misra,et al.  Double-wall anodic titania nanotube arrays for water photooxidation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[14]  Hongtao Yu,et al.  “Mulberry-like” CdSe Nanoclusters Anchored on TiO2 Nanotube Arrays: A Novel Architecture with Remarkable Photoelectrochemical Performance , 2009 .

[15]  Krishnan S. Raja,et al.  Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays , 2009 .

[16]  Craig A. Grimes,et al.  Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry , 2009 .

[17]  L. Mascaro,et al.  Electrodeposition of PbS multilayers on Ag(111) by ECALE , 2009 .

[18]  P. Schmuki,et al.  Bamboo-type TiO2 nanotubes: improved conversion efficiency in dye-sensitized solar cells. , 2008, Journal of the American Chemical Society.

[19]  J. Macák,et al.  Formation of Double‐Walled TiO2 Nanotubes and Robust Anatase Membranes , 2008 .

[20]  J. Stickney,et al.  ALD Approach toward Electrodeposition of Sb2Te3 for Phase-Change Memory Applications , 2008 .

[21]  C. Grimes,et al.  Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. , 2008, Nano letters.

[22]  Prajna P. Das,et al.  Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS , 2008 .

[23]  Nageh K. Allam,et al.  A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing , 2008 .

[24]  F. d’Acapito,et al.  Ternary CdxZn1-xSe deposited on Ag (1 1 1) by ECALE : Electrochemical and EXAFS characterization , 2008 .

[25]  S. Cox,et al.  Formation of PbTe nanofilms by electrochemical atomic layer deposition (ALD) , 2008 .

[26]  J. Stickney,et al.  Cu nanofilm formation by electrochemical atomic layer deposition (ALD) in the presence of chloride ions , 2008 .

[27]  J. Stickney,et al.  Electrodeposition of Ru by atomic layer deposition (ALD) , 2008 .

[28]  M. Misra,et al.  Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[29]  C. Grimes,et al.  Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays , 2008 .

[30]  M. Misra,et al.  Efficient Photoelectrolysis of Water using TiO2 Nanotube Arrays by Minimizing Recombination Losses with Organic Additives , 2008 .

[31]  Xingwang Zhang,et al.  Modification of TiO2 nanotubes arrays by CdS and their photoelectrocatalytic hydrogen generation properties , 2008 .

[32]  C. Grimes,et al.  P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. , 2008, Nano letters.

[33]  Junyou Yang,et al.  Electrochemical aspects and structure characterization of VA-VIA compound semiconductor Bi2Te3/Sb2Te3 superlattice thin films via electrochemical atomic layer epitaxy. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[34]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[35]  J. Stickney,et al.  Ultrahigh Vacuum Surface Studies of the Electrochemical Atomic Layer Deposition of Indium Telluride on n-Type GaAs(100) , 2008 .

[36]  Junyou Yang,et al.  Development of growth cycle for antimony telluride film on Au (111) disk by electrochemical atomic layer epitaxy , 2008 .

[37]  Junyou Yang,et al.  Electrochemical atom-by-atom growth of highly uniform thin sheets of thermoelectric bismuth telluride via the route of ECALE , 2008 .

[38]  Qing Chen,et al.  CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. , 2008, Journal of the American Chemical Society.

[39]  M. Akinc,et al.  Effect of pH on the Carbonate Incorporation into the Hydroxyapatite Prepared by an Oxidative Decomposition of Calcium–EDTA Chelate , 2007 .

[40]  Zhengguo Jin,et al.  Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays , 2007, Nanotechnology.

[41]  Craig A Grimes,et al.  Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. , 2007, Nano letters.

[42]  J. Macák,et al.  Multilayer TiO2–Nanotube Formation by Two-Step Anodization , 2007 .

[43]  M. Facchini,et al.  Patterned growth of CdS by combined electrochemical atomic layer epitaxy and microcontact printing techniques , 2007 .

[44]  Kazunari Domen,et al.  New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light , 2007 .

[45]  Craig A. Grimes,et al.  Synthesis and application of highly ordered arrays of TiO2 nanotubes , 2007 .

[46]  J. Stickney,et al.  Copper Nanofilm Formation by Electrochemical Atomic Layer Deposition Ultrahigh-Vacuum Electrochemical and In Situ STM Studies , 2007 .

[47]  Junyou Yang,et al.  Electrochemical characterization of the underpotential deposition of tellurium on Au electrode , 2007 .

[48]  Ü. Demir,et al.  Atom-by-Atom Growth of CdS Thin Films by an Electrochemical Co-deposition Method: Effects of pH on the Growth Mechanism and Structure , 2007 .

[49]  J. Stickney,et al.  Pb deposition on I-coated Au(111). UHV-EC and EC-STM studies. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[50]  M. Mathe,et al.  Preliminary studies in the electrodeposition of PbSe/PbTe superlattice thin films via electrochemical atomic layer deposition (ALD). , 2006, Langmuir : the ACS journal of surfaces and colloids.

[51]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[52]  I. Erdogan,et al.  Electrochemically induced atom-by-atom growth of ZnS thin films: a new approach for ZnS co-deposition. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[53]  Wen Zhu,et al.  Formation and characterization of Sb2Te3 nanofilms on Pt by electrochemical atomic layer epitaxy. , 2006, The journal of physical chemistry. B.

[54]  C. Grimes,et al.  Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes : Preparation, characterization, and application to photoelectrochemical cells , 2006 .

[55]  I. Erdogan,et al.  Electrochemical Atom-by-Atom Growth of PbS by Modified ECALE Method , 2005 .

[56]  Ü. Demir,et al.  Formation of Bi2S3 thin films on Au(111) by electrochemical atomic layer epitaxy: kinetics of structural changes in the initial monolayers , 2002 .

[57]  Ü. Demir,et al.  Electrochemical Studies of the Effects of pH and the Surface Structure of Gold Substrates on the Underpotential Deposition of Sulfur , 2001 .

[58]  C. Shannon,et al.  Electrochemistry of Cd at (√3×√3)R30°-S/Au(111): Kinetics of Structural Changes in CdS Monolayers , 1996 .

[59]  Ümit Demir,et al.  A Scanning Tunneling Microscopy Study of Electrochemically Grown Cadmium Sulfide Monolayers on Au(111) , 1994 .

[60]  J. Stickney,et al.  Electrochemical atomic layer epitaxy (ECALE) , 1991 .

[61]  H. Tosine,et al.  Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions , 1976, Bulletin of environmental contamination and toxicology.

[62]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[63]  M. Facchini,et al.  Two-Dimensional Self-Organization of CdS Ultra Thin Films by Confined Electrochemical Atomic Layer Epitaxy Growth , 2007 .

[64]  Y. Ku,et al.  Decomposition of EDTA in aqueous solution by UV/H2O2 process , 1998 .

[65]  E. Gilbert,et al.  Ozonation of ethylenediaminetetraacetic acid (EDTA) in aqueous solution, influence of pH value and metal ions , 1990 .