The spatially resolved broad line region of IRAS 09149−6206

We present new near-infrared VLTI/GRAVITY interferometric spectra that spatially resolve the broad Brγ emission line in the nucleus of the active galaxy IRAS 09149−6206. We use these data to measure the size of the broad line region (BLR) and estimate the mass of the central black hole. Using an improved phase calibration method that reduces the differential phase uncertainty to 0.05° per baseline across the spectrum, we detect a differential phase signal that reaches a maximum of ∼0.5° between the line and continuum. This represents an offset of ∼120 μas (0.14 pc) between the BLR and the centroid of the hot dust distribution traced by the 2.3 μm continuum. The offset is well within the dust sublimation region, which matches the measured ∼0.6 mas (0.7 pc) diameter of the continuum. A clear velocity gradient, almost perpendicular to the offset, is traced by the reconstructed photocentres of the spectral channels of the Brγ line. We infer the radius of the BLR to be ∼65 μas (0.075 pc), which is consistent with the radius–luminosity relation of nearby active galactic nuclei derived based on the time lag of the Hβ line from reverberation mapping campaigns. Our dynamical modelling indicates the black hole mass is ∼1 × 108 M⊙, which is a little below, but consistent with, the standard MBH–σ* relation.

[1]  D. N. Okhmat,et al.  Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548 , 2020, The Astrophysical Journal.

[2]  W. Brandt,et al.  Space Telescope and Optical Reverberation Mapping Project. XI. Disk-wind Characteristics and Contributions to the Very Broad Emission Lines of NGC 5548 , 2020, Astrophysical Journal.

[3]  H. Netzer Testing broad-line region models with reverberation mapping , 2020, 2003.07660.

[4]  P. M. Plewa,et al.  An image of the dust sublimation region in the nucleus of NGC 1068 , 2019, Astronomy & Astrophysics.

[5]  L. Ho,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: The Hβ Radius–Luminosity Relation , 2019, The Astrophysical Journal.

[6]  G. Perrin,et al.  The resolved size and structure of hot dust in the immediate vicinity of AGN , 2019, Astronomy & Astrophysics.

[7]  Yan-Rong Li,et al.  Untangling Optical Emissions of the Jet and Accretion Disk in the Flat-spectrum Radio Quasar 3C 273 with Reverberation Mapping Data , 2019, The Astrophysical Journal.

[8]  T. Treu,et al.  Modelling the AGN broad-line region using single-epoch spectra − II. Nearby AGNs , 2019, Monthly notices of the Royal Astronomical Society.

[9]  Yan-Rong Li,et al.  A parallax distance to 3C 273 through spectroastrometry and reverberation mapping , 2019, Nature Astronomy.

[10]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  L. Ho,et al.  Intermediate-Mass Black Holes , 2019, 1911.09678.

[12]  Jian-Min Wang,et al.  The Radius–Luminosity Relationship Depends on Optical Spectra in Active Galactic Nuclei , 2019, The Astrophysical Journal.

[13]  A. Barth,et al.  Modelling the AGN broad line region using single-epoch spectra – I. The test case of Arp 151 , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  K. Long,et al.  Do reverberation mapping analyses provide an accurate picture of the broad-line region? , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  L. Ho,et al.  A Precision Measurement of the Mass of the Black Hole in NGC 3258 from High-resolution ALMA Observations of Its Circumnuclear Disk , 2019, The Astrophysical Journal.

[16]  M. Bernardi,et al.  Black hole scaling relations of active and quiescent galaxies: Addressing selection effects and constraining virial factors , 2019, Monthly Notices of the Royal Astronomical Society.

[17]  R. Abuter,et al.  The GRAVITY fringe tracker , 2019, Astronomy & Astrophysics.

[18]  Paul S. Smith,et al.  Kinematics of the Broad-line Region of 3C 273 from a 10 yr Reverberation Mapping Campaign , 2018, The Astrophysical Journal.

[19]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VIII. Structure of the Broad-line Region and Mass of the Central Black Hole in Mrk 142 , 2018, The Astrophysical Journal.

[20]  T. Paumard,et al.  Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale , 2018, Nature.

[21]  L. Ho,et al.  Monitoring AGNs with Hβ Asymmetry. I. First Results: Velocity-resolved Reverberation Mapping , 2018, The Astrophysical Journal.

[22]  L. Ho,et al.  A High-quality Velocity-delay Map of the Broad-line Region in NGC 5548 , 2018, The Astrophysical Journal.

[23]  D. N. Okhmat,et al.  Velocity-resolved Reverberation Mapping of Five Bright Seyfert 1 Galaxies , 2018, The Astrophysical Journal.

[24]  T. Treu,et al.  Stability of the Broad-line Region Geometry and Dynamics in Arp 151 Over Seven Years , 2018, 1803.02318.

[25]  Yan-Rong Li,et al.  A new approach for measuring power spectra and reconstructing time series in active galactic nuclei , 2018, 1802.07958.

[26]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags , 2018, 1802.03022.

[27]  A. Laor,et al.  Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei , 2017, 1711.00025.

[28]  C. D. Laney,et al.  THE LICK AGN MONITORING PROJECT 2011: DYNAMICAL MODELING OF THE BROAD-LINE REGION IN Mrk 50 , 2012, The Astrophysical Journal.

[29]  Ran Wang,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry , 2017, 1711.03114.

[30]  K. Schawinski,et al.  BAT AGN Spectroscopic Survey. I. Spectral Measurements, Derived Quantities, and AGN Demographics , 2017, 1707.08123.

[31]  K. Long,et al.  The reverberation signatures of rotating disc winds in active galactic nuclei , 2017, 1707.07687.

[32]  G. Perrin,et al.  Submilliarcsecond Optical Interferometry of the High-mass X-Ray Binary BP Cru with VLTI/GRAVITY , 2017, 1705.02351.

[33]  T. Treu,et al.  The Structure of the Broad-line Region in Active Galactic Nuclei. II. Dynamical Modeling of Data From the AGN10 Reverberation Mapping Campaign , 2017, 1705.02346.

[34]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[35]  K. Onishi,et al.  WISDOM project-I: black hole mass measurement using molecular gas kinematics in NGC 3665 , 2017, 1703.05247.

[36]  D. N. Okhmat,et al.  Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548 , 2017, 1702.01177.

[37]  M. Eracleous,et al.  Double-Peaked Profiles: Ubiquitous Signatures of Disks in the Broad Emission Lines of Active Galactic Nuclei , 2016, 1612.06843.

[38]  C. Pichon,et al.  The Horizon-AGN Simulation: Morphological Diversity of Galaxies ,Promoted by AGN Feedback , 2016, 1606.03086.

[39]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. V. A NEW SIZE–LUMINOSITY SCALING RELATION FOR THE BROAD-LINE REGION , 2016, 1604.06218.

[40]  K. Meisenheimer,et al.  Mid-infrared interferometry of 23 AGN tori: On the significance of polar-elongated emission , 2016, 1602.05592.

[41]  L. Ho,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. VI. VELOCITY-RESOLVED REVERBERATION MAPPING OF THE Hβ LINE , 2016, 1602.01922.

[42]  R. Bender,et al.  THE SINFONI BLACK HOLE SURVEY: THE BLACK HOLE FUNDAMENTAL PLANE REVISITED AND THE PATHS OF (CO)EVOLUTION OF SUPERMASSIVE BLACK HOLES AND BULGES , 2016, 1601.00974.

[43]  Anca Constantin,et al.  TOWARD PRECISION SUPERMASSIVE BLACK HOLE MASSES USING MEGAMASER DISKS , 2016, 1601.00645.

[44]  David F. Buscher,et al.  Practical Optical Interferometry: Imaging at Visible and Infrared Wavelengths , 2015 .

[45]  H. Netzer Revisiting the Unified Model of Active Galactic Nuclei , 2015, 1505.00811.

[46]  Chen Hu,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. IV. Hβ TIME LAGS AND IMPLICATIONS FOR SUPER-EDDINGTON ACCRETION , 2015, 1504.01844.

[47]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[48]  E. Maiorano,et al.  The 1.4-GHz radio properties of hard X-ray-selected AGN , 2014, 1411.7829.

[49]  Romain G. Petrov,et al.  Differential interferometry of QSO broad-line regions – I. Improving the reverberation mapping model fits and black hole mass estimates , 2014, 1410.4837.

[50]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[51]  Bradley M. Peterson,et al.  Measuring the Masses of Supermassive Black Holes , 2014 .

[52]  W. M. Wood-Vasey,et al.  THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW , 2014, 1408.5970.

[53]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – I. Improved geometric and dynamical models and comparison with cross-correlation results , 2014, 1407.2941.

[54]  B. Peterson,et al.  THE BLACK HOLE MASS OF NGC 4151. II. STELLAR DYNAMICAL MEASUREMENT FROM NEAR-INFRARED INTEGRAL FIELD SPECTROSCOPY , 2014, 1406.6735.

[55]  Astrophysics,et al.  THE BLACK HOLE MASS SCALE OF CLASSICAL AND PSEUDO BULGES IN ACTIVE GALAXIES , 2014, 1406.6137.

[56]  T. Davis A figure of merit for black hole mass measurements with molecular gas , 2014, 1406.2555.

[57]  Timothy Heckman,et al.  The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe , 2014, 1403.4620.

[58]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set , 2013, 1311.6475.

[59]  Fang Wang,et al.  SUPERMASSIVE BLACK HOLES WITH HIGH ACCRETION RATES IN ACTIVE GALACTIC NUCLEI. I. FIRST RESULTS FROM A NEW REVERBERATION MAPPING CAMPAIGN , 2013, 1310.4107.

[60]  Gerd Weigelt,et al.  A diversity of dusty AGN tori - Data release for the VLTI/MIDI AGN Large Program and first results for 23 galaxies , 2013, 1307.2068.

[61]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[62]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[63]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[64]  B. Trakhtenbrot,et al.  Black Hole Growth to z = 2 - I: Improved Virial Methods for Measuring M_BH and L/L_Edd , 2012, 1209.1096.

[65]  T. Boroson,et al.  A LARGE SYSTEMATIC SEARCH FOR CLOSE SUPERMASSIVE BINARY AND RAPIDLY RECOILING BLACK HOLES , 2012, 1509.02575.

[66]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[67]  A. C. Fabian,et al.  Observational Evidence of AGN Feedback , 2012, 1204.4114.

[68]  U. Toronto,et al.  SWEEPING AWAY THE MYSTERIES OF DUSTY CONTINUOUS WINDS IN ACTIVE GALACTIC NUCLEI , 2012, 1202.4681.

[69]  S. Komossa Recoiling Black Holes: Electromagnetic Signatures, Candidates, and Astrophysical Implications , 2012, 1202.1977.

[70]  Florentin Millour,et al.  Mapping the radial structure of AGN tori , 2011, 1110.4290.

[71]  G. Zhu,et al.  OPTICAL PROPERTIES OF HOST GALAXIES OF EXTRAGALACTIC NUCLEAR WATER MASERS , 2011, 1108.3348.

[72]  Broad-line active galactic nuclei rotate faster than narrow-line ones , 2011, Nature.

[73]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[74]  M. Reid,et al.  THE MEGAMASER COSMOLOGY PROJECT. III. ACCURATE MASSES OF SEVEN SUPERMASSIVE BLACK HOLES IN ACTIVE GALAXIES WITH CIRCUMNUCLEAR MEGAMASER DISKS , 2010, 1008.2146.

[75]  C. Peng,et al.  PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE–BULGE RELATIONS AT LOW MASS , 2010, 1007.2851.

[76]  C. E. Thornton,et al.  THE LICK AGN MONITORING PROJECT: REVERBERATION MAPPING OF OPTICAL HYDROGEN AND HELIUM RECOMBINATION LINES , 2010, 1004.2922.

[77]  T. Treu,et al.  THE LICK AGN MONITORING PROJECT: THE MBH–σ* RELATION FOR REVERBERATION-MAPPED ACTIVE GALAXIES , 2010, 1004.0252.

[78]  J. Bird,et al.  DIVERSE KINEMATIC SIGNATURES FROM REVERBERATION MAPPING OF THE BROAD-LINE REGION IN AGNs , 2009 .

[79]  J. Bird,et al.  DIVERSE KINEMATIC SIGNATURES FROM REVERBERATION MAPPING OF THE BROAD-LINE REGION IN AGNs , 2009, 0908.0327.

[80]  J. Schaye,et al.  Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests , 2009, 0904.2572.

[81]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[82]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[83]  S. Komossa,et al.  A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0? , 2008, 0804.4585.

[84]  M. Malkan,et al.  Circumnuclear Gas in Seyfert 1 Galaxies: Morphology, Kinematics, and Direct Measurement of Black Hole Masses , 2007, 0707.0611.

[85]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[86]  J. Hough,et al.  The rotating wind of the quasar PG 1700+518 , 2007, Nature.

[87]  T. Murphy,et al.  The second epoch Molonglo Galactic Plane Survey: compact source catalogue , 2007, 0708.3092.

[88]  A. Buonanno,et al.  The Distribution of Recoil Velocities from Merging Black Holes , 2007, astro-ph/0702641.

[89]  R. Abuter,et al.  The Star-forming Torus and Stellar Dynamical Black Hole Mass in the Seyfert 1 Nucleus of NGC 3227* , 2006 .

[90]  L. Ho,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALAXIES USING THE H α EMISSION LINE , 2005 .

[91]  J. Everett Radiative Transfer and Acceleration in Magnetocentrifugal Winds , 2005, astro-ph/0506321.

[92]  D. Axon,et al.  Equatorial scattering and the structure of the broad-line region in Seyfert nuclei: evidence for a rotating disc , 2005, astro-ph/0501640.

[93]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[94]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[95]  Mark R. Swain,et al.  Effects of Atmospheric Water Vapor on Infrared Interferometry , 2004 .

[96]  Hebrew University,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004, astro-ph/0407297.

[97]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[98]  R. Bender,et al.  Mapping stationary axisymmetric phase-space distribution functions by orbit libraries , 2004, astro-ph/0406014.

[99]  K. Korista,et al.  What the Optical Recombination Lines Can Tell Us about the Broad-Line Regions of Active Galactic Nuclei , 2004, astro-ph/0402506.

[100]  D. Axon,et al.  Seyferts on the edge: polar scattering and orientation‐dependent polarization in Seyfert 1 nuclei , 2004, astro-ph/0401496.

[101]  A. Karimi,et al.  Master‟s thesis , 2011 .

[102]  M. Eracleous,et al.  Completion of a Survey and Detailed Study of Double-peaked Emission Lines in Radio-loud Active Galactic Nuclei , 2003, astro-ph/0309149.

[103]  R. Nichol,et al.  Double-peaked Low-Ionization Emission Lines in Active Galactic Nuclei , 2003, astro-ph/0307357.

[104]  R. Maiolino,et al.  Extragalactic Astronomy with the VLTI: a new window on the Universe , 2003, astro-ph/0302523.

[105]  J. Baldwin,et al.  He II Reverberation in Active Galactic Nucleus Spectra , 2002 .

[106]  K. Hofmann,et al.  AMBER : a near infrared focal instrument for the VLTI , 2005, astro-ph/0507398.

[107]  M. Elvis A Structure for Quasars , 2000, astro-ph/0008064.

[108]  Kirk T. Korista,et al.  Locally Optimally Emitting Clouds and the Variable Broad Emission Line Spectrum of NGC 5548 , 2000, astro-ph/0001399.

[109]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[110]  P. Petitjean,et al.  Near infrared observations of quasars with extended ionized envelopes , 1998, astro-ph/9810012.

[111]  P. Ciddor Refractive index of air: new equations for the visible and near infrared. , 1996, Applied optics.

[112]  J. Chiang,et al.  Accretion Disk Winds from Active Galactic Nuclei , 1995 .

[113]  M. Eracleous,et al.  Doubled-peaked emission lines in active galactic nuclei , 1994 .

[114]  Bradley M. Peterson,et al.  REVERBERATION MAPPING OF ACTIVE GALACTIC NUCLEI , 1993 .

[115]  H. Netzer,et al.  Dust in the Narrow-Line Region of Active Galactic Nuclei , 1993 .

[116]  M. Eracleous,et al.  Double-peaked emission lines in radio-loud AGNs , 1992 .

[117]  R. Blandford,et al.  Magnetic acceleration of broad emission-line clouds in active galactic nuclei , 1992 .

[118]  Bradley M. Peterson,et al.  Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. II - An intensive study of NGC 5548 at optical wavelengths , 1991 .

[119]  Wei Zheng,et al.  Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I, an 8 month campaign of monitoring NGC 5548 with IUE , 1991 .

[120]  Martin J. Rees,et al.  Small Dense Broad-Line Regions in Active Nuclei , 1989 .

[121]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[122]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[123]  C. M. Gaskell,et al.  Line variations in quasars and Seyfert galaxies , 1986 .

[124]  Christopher F. McKee,et al.  Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. , 1982 .

[125]  G. Schwarz Estimating the Dimension of a Model , 1978 .