Gate-bias stress in amorphous oxide semiconductors thin-film transistors

A quantitative study of the dynamics of threshold-voltage shifts with time in gallium-indium zinc oxide amorphous thin-film transistors is presented using standard analysis based on the stretched exponential relaxation. For devices using thermal silicon oxide as gate dielectric, the relaxation time is 3×105 s at room temperature with activation energy of 0.68 eV. These transistors approach the stability of the amorphous silicon transistors. The threshold voltage shift is faster after water vapor exposure suggesting that the origin of this instability is charge trapping at residual-water-related trap sites.

[1]  John F. Muth,et al.  Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors , 2008 .

[2]  Henrique L. Gomes,et al.  Dynamics of Threshold Voltage Shifts in Organic and Amorphous Silicon Field‐Effect Transistors , 2007 .

[3]  Hyun-Joong Chung,et al.  Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water , 2008 .

[4]  Wolfgang Kowalsky,et al.  Stability of transparent zinc tin oxide transistors under bias stress , 2007 .

[5]  Jung Woo Kim,et al.  Bottom-Gate Gallium Indium Zinc Oxide Thin-Film Transistor Array for High-Resolution AMOLED Display , 2008, IEEE Electron Device Letters.

[6]  Ralf B. Wehrspohn,et al.  Unification of the time and temperature dependence of dangling-bond-defect creation and removal in amorphous-silicon thin-film transistors , 1998 .

[7]  Martijn Kemerink,et al.  Charge Trapping at the Dielectric of Organic Transistors Visualized in Real Time and Space , 2008 .

[8]  Changjung Kim,et al.  High-performance amorphous gallium indium zinc oxide thin-film transistors through N2O plasma passivation , 2008 .

[9]  Yeon-Gon Mo,et al.  Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors , 2008 .

[10]  G. Karunasiri,et al.  Performance of microbolometer focal plane arrays under varying pressure , 2000, IEEE Electron Device Letters.

[11]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[12]  A. Nathan,et al.  Driving schemes for a-Si and LTPS AMOLED displays , 2005, Journal of Display Technology.

[13]  Hideo Hosono,et al.  Defect passivation and homogenization of amorphous oxide thin-film transistor by wet O2 annealing , 2008 .

[14]  Hyuck-In Kwon,et al.  Bias-stress-induced stretched-exponential time dependence of threshold voltage shift in InGaZnO thin film transistors , 2008 .

[15]  Byeong Kwon Ju,et al.  Efficient suppression of charge trapping in ZnO-based transparent thin film transistors with novel Al2O3∕HfO2∕Al2O3 structure , 2008 .

[16]  Pedro Barquinha,et al.  The Effect of Deposition Conditions and Annealing on the Performance of High-Mobility GIZO TFTs , 2008 .

[17]  Hyuck-In Kwon,et al.  Charge trapping and detrapping characteristics in amorphous InGaZnO TFTs under static and dynamic stresses , 2008 .

[18]  M. J. Powell,et al.  Stability of plasma deposited thin film transistors comparison of amorphous and microcrystalline silicon , 2001 .

[19]  Pedro Barquinha,et al.  Toward High-Performance Amorphous GIZO TFTs , 2009 .

[20]  Henrique L. Gomes,et al.  Bias-induced threshold voltages shifts in thin-film organic transistors , 2004 .