The solution structure of an RNA loop-loop complex: the ColE1 inverted loop sequence.

[1]  P. Moore,et al.  The structure of an essential splicing element: stem loop IIa from yeast U2 snRNA. , 1997, Structure.

[2]  Christian Griesinger,et al.  Multiple Quantum Coherence Dramatically Enhances the Sensitivity of CH and CH2 Correlations in Uniformly 13C-Labeled RNA , 1997 .

[3]  E. Westhof,et al.  Non-canonical interactions in a kissing loop complex: the dimerization initiation site of HIV-1 genomic RNA. , 1997, Journal of molecular biology.

[4]  I. Tinoco,et al.  The structure of an RNA "kissing" hairpin complex of the HIV TAR hairpin loop and its complement. , 1997, Journal of molecular biology.

[5]  B. Roques,et al.  NCp7 Activates HIV-1Lai RNA Dimerization by Converting a Transient Loop-Loop Complex into a Stable Dimer* , 1996, The Journal of Biological Chemistry.

[6]  C. Ehresmann,et al.  A loop-loop "kissing" complex is the essential part of the dimer linkage of genomic HIV-1 RNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Muriaux,et al.  A kissing complex together with a stable dimer is involved in the HIV-1Lai RNA dimerization process in vitro. , 1996, Biochemistry.

[8]  D. Crothers,et al.  Determining RNA solution structure by segmental isotopic labeling and NMR: application to Caenorhabditis elegans spliced leader RNA 1. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. Crothers,et al.  Bent helix formation between RNA hairpins with complementary loops. , 1995, Science.

[10]  D. Crothers,et al.  Determinants of RNA hairpin loop-loop complex stability. , 1995, Journal of molecular biology.

[11]  P. Kollman,et al.  A second generation force field for the simulation of proteins , 1995 .

[12]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[13]  P. Moore,et al.  Assignment of NH resonances in nucleic acids using natural abundance 15N‐1H correlation spectroscopy with spin‐echo and gradient pulses , 1993, FEBS letters.

[14]  A. Pardi,et al.  Simple procedure for resonance assignment of the sugar protons in 13C-labeled RNAs , 1992 .

[15]  A. Pardi,et al.  Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. , 1992, Nucleic acids research.

[16]  J. Puglisi,et al.  Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. , 1992, Nucleic acids research.

[17]  G. Varani,et al.  RNA structure and NMR spectroscopy , 1991, Quarterly Reviews of Biophysics.

[18]  M Ikura,et al.  Improved three-dimensional1H−13C−1H correlation spectroscopy of a13C-labeled protein using constant-time evolution , 1991, Journal of biomolecular NMR.

[19]  J. Tomizawa,et al.  Complexes formed by complementary RNA stem-loops. Their formations, structures and interaction with ColE1 Rom protein. , 1991, Journal of molecular biology.

[20]  E. Wagner,et al.  Control of replication of plasmid R1: structures and sequences of the antisense RNA, CopA, required for its binding to the target RNA, CopT. , 1990, The EMBO journal.

[21]  E. Wagner,et al.  Control of replication of plasmid R1: the duplex between the antisense RNA, CopA, and its target, CopT, is processed specifically in vivo and in vitro by RNase III. , 1990, The EMBO journal.

[22]  J. Tomizawa Control of ColE1 plasmid replication. Interaction of Rom protein with an unstable complex formed by RNA I and RNA II. , 1990, Journal of molecular biology.

[23]  K. Wüthrich,et al.  Heteronuclear filters in two-dimensional [1H, 1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions , 1990, Quarterly Reviews of Biophysics.

[24]  J. Tomizawa,et al.  Complex formed by complementary RNA stem-loops and its stabilization by a protein: Function of ColE1 Rom protein , 1990, Cell.

[25]  R. Lavery,et al.  Defining the structure of irregular nucleic acids: conventions and principles. , 1989, Journal of biomolecular structure & dynamics.

[26]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[27]  O. Uhlenbeck,et al.  Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. , 1987, Nucleic acids research.

[28]  A. Bax,et al.  Spin-echo water suppression for the generation of pure-phase two-dimensional NMR spectra , 1987 .

[29]  G. Cesareni,et al.  Regulation of plasmid copy number by complementary RNAs , 1985 .

[30]  J. Tomizawa Control of cole1 plasmid replication: Initial interaction of RNA I and the primer transcript is reversible , 1985, Cell.

[31]  J. Tomizawa Control of cole 1 plasmid replication: The process of binding of RNA I to the primer transcript , 1984, Cell.

[32]  J. Tomizawa,et al.  Control of cole 1 plasmid replication: Enhancement of binding of RNA I to the primer transcript by the rom protein , 1984, Cell.

[33]  L. Castagnoli,et al.  Control of initiation of pMB1 replication: Purified rop protein and RNA I affect primer formation in vitro , 1984, Cell.

[34]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[35]  J. Tomizawa,et al.  Regulatory regions of ColE1 that are involved in determination of plasmid copy number. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. Itoh,et al.  The importance of RNA secondary structure in CoIE1 primer formation , 1982, Cell.

[37]  G. Cesareni,et al.  Control of ColE1 DNA replication: the rop gene product negatively affects transcription from the replication primer promoter. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Sherratt,et al.  Trans-complementable copy-number mutants of plasmid ColE1 , 1980, Nature.

[39]  A T Brünger,et al.  Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. , 1997, Journal of magnetic resonance.

[40]  H. Berman,et al.  New parameters for the refinement of nucleic acid-containing structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[41]  O. Uhlenbeck,et al.  Synthesis of small RNAs using T7 RNA polymerase. , 1989, Methods in enzymology.

[42]  M. Inouye,et al.  The role of antisense RNA in gene regulation. , 1986, Annual review of biochemistry.

[43]  David G. Gorenstein,et al.  Phosphorus-31 NMR : principles and applications , 1984 .

[44]  D. Gorenstein CHAPTER 1 – Phosphorus-31 Chemical Shifts: Principles and Empirical Observations , 1984 .

[45]  D. Gorenstein Nucleotide conformational analysis by 31P nuclear magnetic resonance spectroscopy. , 1981, Annual review of biophysics and bioengineering.