Evaluating local community methods in networks

We present a new benchmarking procedure that is unambiguous and specific to local community finding methods, allowing one to compare the accuracy of various methods. We apply this to new and existing algorithms. A simple class of synthetic benchmark networks is also developed, capable of testing properties specific to these local methods.

[1]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M E J Newman,et al.  Fast algorithm for detecting community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Leon Danon,et al.  Comparing community structure identification , 2005, cond-mat/0505245.

[4]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[5]  A. Barabasi,et al.  Quantifying social group evolution , 2007, Nature.

[6]  C. Lee Giles,et al.  Efficient identification of Web communities , 2000, KDD '00.

[7]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[8]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[9]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[10]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  K. Sneppen,et al.  Detection of topological patterns in complex networks: correlation profile of the internet , 2002, cond-mat/0205379.

[13]  F. Rao,et al.  Local modularity measure for network clusterizations. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Ulrik Brandes,et al.  Efficient generation of large random networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Claudio Castellano,et al.  Defining and identifying communities in networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  Illés J. Farkas,et al.  CFinder: locating cliques and overlapping modules in biological networks , 2006, Bioinform..

[19]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[20]  R. Guimerà,et al.  Modularity from fluctuations in random graphs and complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Erik M Bollt,et al.  Local method for detecting communities. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  S. Strogatz Exploring complex networks , 2001, Nature.

[23]  J. Doye,et al.  Identifying communities within energy landscapes. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[25]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[27]  A. Clauset Finding local community structure in networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  A. Ruttenberg,et al.  Edge‐count probabilities for the identification of local protein communities and their organization , 2005, Proteins.

[29]  Martin Halvey,et al.  WWW '07: Proceedings of the 16th international conference on World Wide Web , 2007, WWW 2007.

[30]  Leon Danon,et al.  The effect of size heterogeneity on community identification in complex networks , 2006, physics/0601144.

[31]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[32]  Albert-László Barabási,et al.  COMMUNITY DYNAMICS IN SOCIAL NETWORKS , 2007 .

[33]  A. Châtelain,et al.  The European Physical Journal D , 1999 .

[34]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[35]  J. Reichardt,et al.  Statistical mechanics of community detection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  G. C. Gupta WEB INTELLIGENCE , 2004 .

[37]  Mason A. Porter,et al.  Community Structure in the United States House of Representatives , 2007 .

[38]  Tamás Vicsek,et al.  The Critical Point of k-Clique Percolation in the Erdős–Rényi Graph , 2007 .

[39]  Ken Wakita,et al.  Finding community structure in mega-scale social networks: [extended abstract] , 2007, WWW '07.

[40]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  T. Vicsek,et al.  Clique percolation in random networks. , 2005, Physical review letters.

[42]  Tamás Vicsek,et al.  Phase transitions and overlapping modules in complex networks , 2007 .

[43]  T. Vicsek,et al.  Community structure and ethnic preferences in school friendship networks , 2006, physics/0611268.

[44]  Craig Partridge,et al.  Proceedings of the conference on Applications, Technologies, Architectures, and Protocols for Computer Communication , 2000, SIGCOMM 2000.