Science and policy characteristics of the Paris Agreement temperature goal

There are discernible differences in climate impacts between 1.5 °C and 2 °C of warming. The extent of countries' near-term mitigation ambition will determine the success of the Paris Agreement's temperature goal.

[1]  Keywan Riahi,et al.  Air-pollution emission ranges consistent with the representative concentration pathways , 2014 .

[2]  A. Levermann,et al.  Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin , 2015, Proceedings of the National Academy of Sciences.

[3]  Hans Joachim Schellnhuber,et al.  Long-term response of oceans to CO2 removal from the atmosphere , 2015 .

[4]  R. Washington,et al.  Changes in African temperature and precipitation associated with degrees of global warming , 2013, Climatic Change.

[5]  R. Pachauri,et al.  IPCC, Climate Change : Synthesis Report. , 2016 .

[6]  Simon Buckle,et al.  Mitigation of climate change , 2009, The Daunting Climate Change.

[7]  C. Heald,et al.  Threat to future global food security from climate change and ozone air pollution , 2014 .

[8]  J. Rogelj,et al.  Paris Agreement climate proposals need a boost to keep warming well below 2 °C , 2016, Nature.

[9]  Rachel Warren,et al.  Global crop yield response to extreme heat stress under multiple climate change futures , 2014 .

[10]  Corinne Le Quéré,et al.  Betting on negative emissions , 2014 .

[11]  A. Levermann,et al.  Ice plug prevents irreversible discharge from East Antarctica , 2014 .

[12]  D. McCollum,et al.  Probabilistic cost estimates for climate change mitigation , 2013, Nature.

[13]  Jeffrey W. White,et al.  Rising Temperatures Reduce Global Wheat Production , 2015 .

[14]  M. Burke,et al.  Global non-linear effect of temperature on economic production , 2015, Nature.

[15]  Kenichi Wada,et al.  Technological Forecasting & Social Change Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals , 2014 .

[16]  Half of the world’s population experience robust changes in the water cycle for a 2 °C warmer world , 2014 .

[17]  C. Field Managing the risks of extreme events and disasters to advance climate change adaption , 2012 .

[18]  E. Schmid,et al.  Global land-use implications of first and second generation biofuel targets , 2011 .

[19]  Keywan Riahi,et al.  Zero emission targets as long-term global goals for climate protection , 2015 .

[20]  Christoph Schmitz,et al.  Agriculture and climate change in global scenarios: why don't the models agree , 2014 .

[21]  Keywan Riahi,et al.  A new scenario framework for Climate Change Research: scenario matrix architecture , 2014, Climatic Change.

[22]  E. Fischer,et al.  Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes , 2015 .

[23]  G. Luderer,et al.  Energy system transformations for limiting end-of-century warming to below 1.5 °C , 2015 .

[24]  Ottmar Edenhofer,et al.  King Coal and the queen of subsidies , 2015, Science.

[25]  D. Lobell,et al.  A meta-analysis of crop yield under climate change and adaptation , 2014 .

[26]  R. Knutti,et al.  Geosciences after Paris , 2016 .

[27]  S. Rahmstorf,et al.  Sea-level rise due to polar ice-sheet mass loss during past warm periods , 2015, Science.

[28]  S. Seneviratne,et al.  Allowable CO2 emissions based on regional and impact-related climate targets , 2016, Nature.

[29]  B. Scheuchl,et al.  Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011 , 2014 .

[30]  M. Ha-Duong,et al.  Climate change 2014 - Mitigation of climate change , 2015 .

[31]  S. Rahmstorf,et al.  Why the right climate target was agreed in Paris , 2016 .

[32]  Frank Kauker,et al.  Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current , 2012, Nature.

[33]  F. Zwiers,et al.  Global increasing trends in annual maximum daily precipitation , 2013 .

[34]  K. Riahi,et al.  Managing Climate Risk , 2001, Science.

[35]  Elmar Kriegler,et al.  Economic mitigation challenges: how further delay closes the door for achieving climate targets , 2013 .

[36]  B. Smith,et al.  Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica , 2014, Science.

[37]  Peter U. Clark,et al.  The multimillennial sea-level commitment of global warming , 2013, Proceedings of the National Academy of Sciences.

[38]  Stephen M. Griffies,et al.  Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds , 2014 .

[39]  P. Harris Climate policy: Risk-averse governments , 2014 .

[40]  T. Lippmann,et al.  Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years , 2012, Coral Reefs.

[41]  J. Palutikof,et al.  Climate change 2007 : impacts, adaptation and vulnerability , 2001 .

[42]  James W. Jones,et al.  Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison , 2013, Proceedings of the National Academy of Sciences.

[43]  O. Edenhofer,et al.  Climate change 2014 : mitigation of climate change , 2014 .

[44]  A. Payne,et al.  Retreat of Pine Island Glacier controlled by marine ice-sheet instability , 2014 .

[45]  Carlo Jaeger,et al.  Three views of two degrees , 2010 .

[46]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[47]  Christoph Schmitz,et al.  Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution , 2014, Nature Communications.

[48]  Christopher B. Field,et al.  Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: List of Major IPCC Reports , 2012 .

[49]  C. Müller,et al.  Constraints and potentials of future irrigation water availability on agricultural production under climate change , 2013, Proceedings of the National Academy of Sciences.

[50]  S. Carpenter,et al.  Planetary boundaries: Guiding human development on a changing planet , 2015, Science.

[51]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[52]  F. Joos,et al.  Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios , 2015, Science.

[53]  K. Calvin,et al.  The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 , 2011 .

[54]  N. Ramankutty,et al.  Influence of extreme weather disasters on global crop production , 2016, Nature.

[55]  R. Betts,et al.  Realizing the impacts of a 1.5 °C warmer world , 2016 .

[56]  Christopher B. Field,et al.  Mapping the climate change challenge , 2016 .

[57]  B. Dawson,et al.  UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE (UNFCCC) , 2008 .

[58]  E. Fischer,et al.  Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C , 2015 .

[59]  Scott Kulp,et al.  Consequences of twenty-first-century policy for multi-millennial climate and sea-level change , 2016 .

[60]  Felipe J. Colón-González,et al.  Multimodel assessment of water scarcity under climate change , 2013, Proceedings of the National Academy of Sciences.

[61]  V. Brovkin,et al.  Estimating the near-surface permafrost-carbon feedback on global warming , 2012 .

[62]  E. Fischer,et al.  A scientific critique of the two-degree climate change target , 2016 .

[63]  Dim Coumou,et al.  Increased record-breaking precipitation events under global warming , 2015, Climatic Change.

[64]  Keywan Riahi,et al.  Differences between carbon budget estimates unravelled , 2016 .

[65]  Timothy M. Lenton,et al.  Investing in negative emissions , 2015 .

[66]  T. Stocker,et al.  SBSTA-IPCC Special Event Climate Change 2013: The Physical Science Basis , 2013 .

[67]  C. Tebaldi,et al.  Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades , 2014 .

[68]  M. Scheffer,et al.  Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models , 2015, Proceedings of the National Academy of Sciences.

[69]  S. Seneviratne,et al.  Global assessment of trends in wetting and drying over land , 2014 .

[70]  Christoph Schmitz,et al.  Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison , 2014 .

[71]  Joeri Rogelj,et al.  National post-2020 greenhouse gas targets and diversity-aware leadership , 2015 .

[72]  Phil Williamson,et al.  Emissions reduction: Scrutinize CO2 removal methods , 2016, Nature.

[73]  Brian C. O'Neill,et al.  2020 emissions levels required to limit warming to below 2 °C , 2013 .

[74]  R. Knutti,et al.  Implications of potentially lower climate sensitivity on climate projections and policy , 2014 .

[75]  Christopher B. Field,et al.  The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups , 2011 .

[76]  M. Meinshausen,et al.  Probabilistic projections of the Atlantic overturning , 2014, Climatic Change.

[77]  G. Bennett,et al.  The assessment. , 1989, Health visitor.

[78]  T. Fichefet,et al.  Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs , 2014 .

[79]  Jan Corfee-Morlot,et al.  Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern” , 2009, Proceedings of the National Academy of Sciences.

[80]  E. Hawkins,et al.  Wetter then drier in some tropical areas , 2014 .

[81]  Mike Hulme,et al.  1.5 [deg]C and climate research after the Paris Agreement , 2016 .

[82]  John P. Weyant,et al.  The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies , 2014, Climatic Change.

[83]  Jason Lowe,et al.  The Reversibility of Sea Level Rise , 2013 .

[84]  Peter Good,et al.  Understanding nonlinear tropical precipitation responses to CO2 forcing , 2013 .

[85]  Antonella Battaglini,et al.  Climate hotspots: key vulnerable regions, climate change and limits to warming , 2011 .

[86]  D. Lobell,et al.  Regional disparities in the CO2 fertilization effect and implications for crop yields , 2013 .

[87]  M. Mace,et al.  Mitigation Commitments Under the Paris Agreement and the Way Forward , 2016 .

[88]  N. H. Ravindranath,et al.  Bioenergy and climate change mitigation: an assessment , 2015 .

[89]  S. Seneviratne,et al.  No pause in the increase of hot temperature extremes , 2014 .

[90]  N. Nakicenovic,et al.  Biophysical and economic limits to negative CO2 emissions , 2016 .

[91]  J. Lelieveld,et al.  The contribution of outdoor air pollution sources to premature mortality on a global scale , 2015, Nature.

[92]  Jacob Schewe,et al.  Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise , 2010 .