A pedestrian review of the theory and application of the simulated annealing algorithm

Simulated annealing is a combinatorial optimization method based on randomization techniques. The method originates from the analogy between the annealing of solids, as described by the theory of statistical physics, and the optimization of large combinatorial problems. Here we review the basic theory of simulated annealing and recite a number of applications of the method. The theoretical review includes concepts of the theory of homogeneous and inhomogeneous Markov chains, an analysis of the asymptotic convergence of the algorithm, and a discussion of the finite-time behaviour. Furthermore, a section is devoted to the relation between statistical physics and the optimization of combinatorial problems. General aspects related to the application of the algorithm are briefly discussed. The list of applications includes combinatorial optimization problems related to VLSI design, image processing, code design and neural networks.

[1]  E. Bonomi,et al.  The N-City Travelling Salesman Problem: Statistical Mechanics and the Metropolis Algorithm , 1984 .

[2]  C. L. Liu,et al.  MULTIPLE PLA FOLDING BY THE METHOD OF SIMULATED ANNEALING. , 1986 .

[3]  D. Mitra,et al.  Convergence and finite-time behavior of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[4]  B. Gidas Nonstationary Markov chains and convergence of the annealing algorithm , 1985 .

[5]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[6]  Valerie Isham,et al.  Non‐Negative Matrices and Markov Chains , 1983 .

[7]  E. Sontag,et al.  Image restoration and segmentation using the annealing algorithm , 1985, 1985 24th IEEE Conference on Decision and Control.

[8]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[9]  P. Carnevali,et al.  Image processing by stimulated annealing , 1985 .

[10]  R. G. Paxman,et al.  Application of Simulated Annealing to Coded-Aperture Design and Tomographic Reconstruction , 1985, IEEE Transactions on Nuclear Science.

[11]  Steve R. White,et al.  Configuration Space Analysis for Optimization Problems , 1986 .

[12]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[13]  Giorgio Parisi,et al.  Order parameter for spin-glasses , 1983 .

[14]  S. Kirkpatrick,et al.  Configuration space analysis of travelling salesman problems , 1985 .

[15]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Scott Kirkpatrick,et al.  Global Wiring by Simulated Annealing , 1983, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[17]  George Wolberg,et al.  Restoration of binary images using stochastic relaxation with annealing , 1985, Pattern Recognit. Lett..

[18]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[19]  Ehl Emile Aarts,et al.  Statistical cooling : a general approach to combinatorial optimization problems , 1985 .

[20]  Geoffrey E. Hinton,et al.  A Learning Algorithm for Boltzmann Machines , 1985, Cogn. Sci..

[21]  Alistair I. Mees,et al.  Convergence of an annealing algorithm , 1986, Math. Program..

[22]  J. Barker,et al.  What is "liquid"? Understanding the states of matter , 1976 .

[23]  B. Gidas Global optimization via the Langevin equation , 1985, 1985 24th IEEE Conference on Decision and Control.

[24]  Joos Vandewalle,et al.  Sailplane: a simulated annealing based CAD-tool for the analysis of limit-cycle behaviour , 1985 .

[25]  Bruce Hajek,et al.  A tutorial survey of theory and applications of simulated annealing , 1985, 1985 24th IEEE Conference on Decision and Control.

[26]  M. Mézard,et al.  Replicas and optimization , 1985 .

[27]  C. L. Liu,et al.  A New Algorithm for Floorplan Design , 1986, DAC 1986.

[28]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[29]  R. Holley,et al.  Rapid Convergence to Equilibrium in One Dimensional Stochastic Ising Models , 1985 .

[30]  Paolo Carnevali,et al.  Image Processing by Simulated Annealing , 1985, IBM J. Res. Dev..

[31]  Emile H. L. Aarts,et al.  A new polynomial time cooling schedule , 1985 .

[32]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[33]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[34]  Emile H. L. Aarts,et al.  Design-for-Testability of PLA'S Using Statistical Cooling , 1986, DAC 1986.

[35]  Emile H. L. Aarts,et al.  Parallel implementations of the statistical cooling algorithm , 1986, Integr..

[36]  Emile H. L. Aarts,et al.  A Parallel Statistical Cooling Algorithm , 1986, STACS.

[37]  Levin,et al.  Cooling-rate dependence for the spin-glass ground-state energy: Implications for optimization by simulated annealing. , 1986, Physical review letters.

[38]  Srinivas Devadas,et al.  GENIE: A Generalized Array Optimizer for VLSI Synthesis , 1986, DAC 1986.

[39]  K. Binder Monte Carlo methods in statistical physics , 1979 .

[40]  Hon Wai Leong,et al.  SIMULATED-ANNEALING CHANNEL ROUTER. , 1985 .

[41]  H H Barrett,et al.  Reconstruction of objects from coded images by simulated annealing. , 1983, Optics letters.

[42]  F. Rendl,et al.  A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .

[43]  Alberto Sangiovanni-Vincentelli,et al.  TimberWolf3.2: A New Standard Cell Placement and Global Routing Package , 1986, DAC 1986.

[44]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[45]  M. Mézard,et al.  Nature of the Spin-Glass Phase , 1984 .

[46]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.