Completing a block diagonal matrix with a partially prescribed inverse

Abstract A complete solution of the matrix completion problem A ? ? B −1 = ? C D ? is obtained in terms of solutions of a Riccati-type matrix equation. Several special cases are described in detail.

[1]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[2]  H. Bart,et al.  Matricial Coupling and Equivalence After Extension , 1992 .

[3]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[4]  M. A. Kaashoek,et al.  The Coupling Method for Solving Integral Equations , 1984 .

[5]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[6]  Hugo J. Woerdeman,et al.  Minimal rank completions of partial banded matrices , 1993 .

[7]  Charles R. Johnson,et al.  Determinantal formulae for matrix completions associated with chordal graphs , 1989 .

[8]  Miroslav Fiedler,et al.  Completing a Matrix When Certain Entries of Its Inverse Are Specified , 1986 .

[9]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[10]  Charles R. Johnson,et al.  An inertia formula for Hermitian matrices with sparse inverses , 1992 .

[11]  Hugo J. Woerdeman,et al.  Maximum Entropy Elements in the Intersection of an Affine Space and the Cone of Positive Definite Matrices , 1995, SIAM J. Matrix Anal. Appl..

[12]  Charles R. Johnson,et al.  Matrices with chordal inverse zero-patterns , 1993 .

[13]  T. Speed,et al.  Gaussian Markov Distributions over Finite Graphs , 1986 .

[14]  Charles R. Johnson,et al.  Nonnegative Solutions of a Quadratic Matrix Equation Arising from Comparison Theorems in Ordinary Differential Equations , 1985 .

[15]  M. Fiedler,et al.  Matrix Inequalities , 1966 .