Disformal Transformations in Scalar–Torsion Gravity
暂无分享,去创建一个
[1] S. Bahamonde,et al. Can Horndeski theory be recast using teleparallel gravity? , 2019, Physical Review D.
[2] L. Heisenberg,et al. The Geometrical Trinity of Gravity , 2019, Universe.
[3] Tsutomu Kobayashi. Horndeski theory and beyond: a review , 2019, Reports on progress in physics. Physical Society.
[4] T. Koivisto,et al. Scale Transformations in Metric-Affine Geometry , 2018, Universe.
[5] O. Vilson,et al. Family of scalar-nonmetricity theories of gravity , 2018, Physical Review D.
[6] S. Capozziello,et al. Cosmic acceleration in non-flat f(T) cosmology , 2018, 1804.03649.
[7] S. Capozziello,et al. Classification of the Horndeski cosmologies via Noether symmetries , 2018, The European physical journal. C, Particles and fields.
[8] M. Saal,et al. Nonmetricity formulation of general relativity and its scalar-tensor extension , 2018, Physical Review D.
[9] M. Hohmann. Scalar-torsion theories of gravity III: analogue of scalar-tensor gravity and conformal invariants , 2018, 1801.06531.
[10] C. Pfeifer,et al. Scalar-torsion theories of gravity II: $L(T, X, Y, \phi)$ theory , 2018, 1801.06536.
[11] M. Hohmann. Scalar-torsion theories of gravity. I. General formalism and conformal transformations , 2018, Physical Review D.
[12] M. Hohmann,et al. Covariant formulation of scalar-torsion gravity , 2018, 1801.05786.
[13] M. Hohmann,et al. Dynamical systems approach and generic properties of $f(T)$ cosmology , 2017, 1706.02376.
[14] J. Garc'ia-Bellido,et al. Field redefinitions in theories beyond Einstein gravity using the language of differential forms , 2017, 1701.05476.
[15] K. Koyama,et al. Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order , 2016, 1608.08135.
[16] D. Langlois,et al. Healthy degenerate theories with higher derivatives , 2016, 1603.09355.
[17] J. Garc'ia-Bellido,et al. Towards the most general scalar-tensor theories of gravity: a unified approach in the language of differential forms , 2016, 1603.01269.
[18] M. Wright. Conformal transformations in modified teleparallel theories of gravity revisited , 2016, 1602.05764.
[19] K. Koyama,et al. Extended scalar-tensor theories of gravity , 2016, 1602.03119.
[20] F. Vernizzi,et al. New class of consistent scalar-tensor theories. , 2014, Physical review letters.
[21] D. Langlois,et al. Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability , 2015, 1510.06930.
[22] M. Hohmann. Parametrized post-Newtonian limit of Horndeski’s gravity theory , 2015, 1506.04253.
[23] F. Vernizzi,et al. New class of consistent scalar-tensor theories. , 2015, Physical review letters.
[24] H. Motohashi,et al. Third order equations of motion and the Ostrogradsky instability , 2014, 1411.3721.
[25] M. Saal,et al. Invariant quantities in the scalar-tensor theories of gravitation , 2014, 1411.1947.
[26] Xian Gao. Unifying framework for scalar-tensor theories of gravity , 2014, 1406.0822.
[27] U. Heidelberg,et al. Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian , 2013, 1308.4685.
[28] S. Liberati,et al. Disformal invariance of second order scalar-tensor theories: Framing the Horndeski action , 2013, 1405.3938.
[29] J. W. Maluf,et al. Conformally invariant teleparallel theories of gravity , 2011, 1110.3095.
[30] J. Yokoyama,et al. Generalized G-Inflation —Inflation with the Most General Second-Order Field Equations— , 2011, 1105.5723.
[31] D. Steer,et al. From k-essence to generalised Galileons , 2011, 1103.3260.
[32] Rongjia Yang. Conformal transformation in f(T) theories , 2010, 1010.1376.
[33] S. Capozziello,et al. SPACE-TIME DEFORMATIONS AS EXTENDED CONFORMAL TRANSFORMATIONS , 2007, 0712.0238.
[34] E. Flanagan. The Conformal frame freedom in theories of gravitation , 2004, gr-qc/0403063.
[35] Y. Fujii,et al. The Scalar–Tensor Theory of Gravitation: Cosmology with Λ , 2003 .
[36] 藤井 保憲,et al. The scalar-tensor theory of gravitation , 2003 .
[37] J. Bekenstein,et al. Relation between physical and gravitational geometry. , 1992, Physical review. D, Particles and fields.
[38] K. Hayashi,et al. New General Relativity , 1979 .
[39] G. W. Horndeski. Second-order scalar-tensor field equations in a four-dimensional space , 1974 .