Disformal Transformations in Scalar–Torsion Gravity

We study disformal transformations in the context of scalar extensions to teleparallel gravity, in which the gravitational interaction is mediated by the torsion of a flat, metric compatible connection. We find a generic class of scalar–torsion actions which is invariant under disformal transformations, and which possesses different invariant subclasses. For the most simple of these subclasses we explicitly derive all terms that may appear in the action. We propose to study actions from this class as possible teleparallel analogues of healthy beyond Horndeski theories.

[1]  S. Bahamonde,et al.  Can Horndeski theory be recast using teleparallel gravity? , 2019, Physical Review D.

[2]  L. Heisenberg,et al.  The Geometrical Trinity of Gravity , 2019, Universe.

[3]  Tsutomu Kobayashi Horndeski theory and beyond: a review , 2019, Reports on progress in physics. Physical Society.

[4]  T. Koivisto,et al.  Scale Transformations in Metric-Affine Geometry , 2018, Universe.

[5]  O. Vilson,et al.  Family of scalar-nonmetricity theories of gravity , 2018, Physical Review D.

[6]  S. Capozziello,et al.  Cosmic acceleration in non-flat f(T) cosmology , 2018, 1804.03649.

[7]  S. Capozziello,et al.  Classification of the Horndeski cosmologies via Noether symmetries , 2018, The European physical journal. C, Particles and fields.

[8]  M. Saal,et al.  Nonmetricity formulation of general relativity and its scalar-tensor extension , 2018, Physical Review D.

[9]  M. Hohmann Scalar-torsion theories of gravity III: analogue of scalar-tensor gravity and conformal invariants , 2018, 1801.06531.

[10]  C. Pfeifer,et al.  Scalar-torsion theories of gravity II: $L(T, X, Y, \phi)$ theory , 2018, 1801.06536.

[11]  M. Hohmann Scalar-torsion theories of gravity. I. General formalism and conformal transformations , 2018, Physical Review D.

[12]  M. Hohmann,et al.  Covariant formulation of scalar-torsion gravity , 2018, 1801.05786.

[13]  M. Hohmann,et al.  Dynamical systems approach and generic properties of $f(T)$ cosmology , 2017, 1706.02376.

[14]  J. Garc'ia-Bellido,et al.  Field redefinitions in theories beyond Einstein gravity using the language of differential forms , 2017, 1701.05476.

[15]  K. Koyama,et al.  Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order , 2016, 1608.08135.

[16]  D. Langlois,et al.  Healthy degenerate theories with higher derivatives , 2016, 1603.09355.

[17]  J. Garc'ia-Bellido,et al.  Towards the most general scalar-tensor theories of gravity: a unified approach in the language of differential forms , 2016, 1603.01269.

[18]  M. Wright Conformal transformations in modified teleparallel theories of gravity revisited , 2016, 1602.05764.

[19]  K. Koyama,et al.  Extended scalar-tensor theories of gravity , 2016, 1602.03119.

[20]  F. Vernizzi,et al.  New class of consistent scalar-tensor theories. , 2014, Physical review letters.

[21]  D. Langlois,et al.  Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability , 2015, 1510.06930.

[22]  M. Hohmann Parametrized post-Newtonian limit of Horndeski’s gravity theory , 2015, 1506.04253.

[23]  F. Vernizzi,et al.  New class of consistent scalar-tensor theories. , 2015, Physical review letters.

[24]  H. Motohashi,et al.  Third order equations of motion and the Ostrogradsky instability , 2014, 1411.3721.

[25]  M. Saal,et al.  Invariant quantities in the scalar-tensor theories of gravitation , 2014, 1411.1947.

[26]  Xian Gao Unifying framework for scalar-tensor theories of gravity , 2014, 1406.0822.

[27]  U. Heidelberg,et al.  Transforming gravity: from derivative couplings to matter to second-order scalar-tensor theories beyond the Horndeski Lagrangian , 2013, 1308.4685.

[28]  S. Liberati,et al.  Disformal invariance of second order scalar-tensor theories: Framing the Horndeski action , 2013, 1405.3938.

[29]  J. W. Maluf,et al.  Conformally invariant teleparallel theories of gravity , 2011, 1110.3095.

[30]  J. Yokoyama,et al.  Generalized G-Inflation —Inflation with the Most General Second-Order Field Equations— , 2011, 1105.5723.

[31]  D. Steer,et al.  From k-essence to generalised Galileons , 2011, 1103.3260.

[32]  Rongjia Yang Conformal transformation in f(T) theories , 2010, 1010.1376.

[33]  S. Capozziello,et al.  SPACE-TIME DEFORMATIONS AS EXTENDED CONFORMAL TRANSFORMATIONS , 2007, 0712.0238.

[34]  E. Flanagan The Conformal frame freedom in theories of gravitation , 2004, gr-qc/0403063.

[35]  Y. Fujii,et al.  The Scalar–Tensor Theory of Gravitation: Cosmology with Λ , 2003 .

[36]  藤井 保憲,et al.  The scalar-tensor theory of gravitation , 2003 .

[37]  J. Bekenstein,et al.  Relation between physical and gravitational geometry. , 1992, Physical review. D, Particles and fields.

[38]  K. Hayashi,et al.  New General Relativity , 1979 .

[39]  G. W. Horndeski Second-order scalar-tensor field equations in a four-dimensional space , 1974 .