A nonlinear eigenvalue problem arising in a nanostructured quantum dot

Abstract In this paper we investigate a minimization problem related to the principal eigenvalue of the s -wave Schrodinger operator. The operator depends nonlinearly on the eigenparameter. We prove the existence of a solution for the optimization problem and the uniqueness will be addressed when the domain is a ball. The optimized solution can be applied to design new electronic and photonic devices based on the quantum dots.

[1]  F. John Partial differential equations , 1967 .

[2]  M. Jaulent,et al.  The inverses-wave scattering problem for a class of potentials depending on energy , 1972 .

[3]  Fabrizio Cuccu,et al.  Optimization problems on general classes of rearrangements , 2011 .

[4]  G. R. Burton,et al.  Variational problems on classes of rearrangements and multiple configurations for steady vortices , 1989 .

[5]  K. Hadeler,et al.  A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems , 1982 .

[6]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[7]  Jean-Pierre Gossez,et al.  Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight , 2010 .

[8]  Weichung Wang,et al.  A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation , 2010, J. Comput. Phys..

[9]  Behrouz Emamizadeh,et al.  OPTIMIZATION OF THE FIRST EIGENVALUE IN PROBLEMS THE p -LAPLACIAN , 2009 .

[10]  William P. Ziemer,et al.  Minimal rearrangements of Sobolev functions. , 1987 .

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[13]  舛本 泰章,et al.  Semiconductor quantum dots : physics, spectroscopy and applications , 2002 .

[14]  H. Voss A Maxmin Principle for Nonlinear Eigenvalue Problems with Application to a Rational Spectral Problem in Fluid-Solid Vibration , 2003 .

[15]  Chien-Ping Lee,et al.  Energy and coordinate dependent effective mass and confined electron states in quantum dots , 2001 .

[16]  D. Grieser,et al.  Symmetry Breaking and Other Phenomena in the Optimization of Eigenvalues for Composite Membranes , 1999, math/9912116.

[17]  Chien-Ping Lee,et al.  Energy states and magnetization in nanoscale quantum rings , 2002 .

[18]  Pierre-Louis Lions,et al.  On optimization problems with prescribed rearrangements , 1989 .

[19]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[20]  Fabrizio Cuccu,et al.  minimization of the first eigenvalue in problems involving the bi-laplacian , 2008 .

[21]  H. Fédérer Geometric Measure Theory , 1969 .

[22]  R. Jackson Inequalities , 2007, Algebra for Parents.

[23]  Fariba Bahrami,et al.  Shape dependent energy optimization in quantum dots , 2012, Appl. Math. Lett..

[24]  Behrouz Emamizadeh,et al.  Existence of an extremal ground state energy of a nanostructured quantum dot , 2011 .

[25]  E. Lieb,et al.  Quantum Dots , 2019, Encyclopedia of Color Science and Technology.

[26]  R. E. L. Turner Some variational principles for a nonlinear eigenvalue problem , 1967 .