Quantitative morphometry of electrophysiologically identified CA3b interneurons reveals robust local geometry and distinct cell classes

The morphological and electrophysiological diversity of inhibitory cells in hippocampal area CA3 may underlie specific computational roles and is not yet fully elucidated. In particular, interneurons with somata in strata radiatum (R) and lacunosum‐moleculare (L‐M) receive converging stimulation from the dentate gyrus and entorhinal cortex as well as within CA3. Although these cells express different forms of synaptic plasticity, their axonal trees and connectivity are still largely unknown. We investigated the branching and spatial patterns, plus the membrane and synaptic properties, of rat CA3b R and L‐M interneurons digitally reconstructed after intracellular labeling. We found considerable variability within but no difference between the two layers, and no correlation between morphological and biophysical properties. Nevertheless, two cell types were identified based on the number of dendritic bifurcations, with significantly different anatomical and electrophysiological features. Axons generally branched an order of magnitude more than dendrites. However, interneurons on both sides of the R/L‐M boundary revealed surprisingly modular axodendritic arborizations with consistently uniform local branch geometry. Both axons and dendrites followed a lamellar organization, and axons displayed a spatial preference toward the fissure. Moreover, only a small fraction of the axonal arbor extended to the outer portion of the invaded volume, and tended to return toward the proximal region. In contrast, dendritic trees demonstrated more limited but isotropic volume occupancy. These results suggest a role of predominantly local feedforward and lateral inhibitory control for both R and L‐M interneurons. Such a role may be essential to balance the extensive recurrent excitation of area CA3 underlying hippocampal autoassociative memory function. J. Comp. Neurol. 515:677–695, 2009. © 2009 Wiley‐Liss, Inc.

[1]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[2]  Mario Treviño,et al.  GABA actions in hippocampal area CA3 during postnatal development: differential shift from depolarizing to hyperpolarizing in somatic and dendritic compartments. , 2008, Journal of neurophysiology.

[3]  J. Lacaille,et al.  Membrane properties and synaptic responses of interneurons located near the stratum lacunosum-moleculare/radiatum border of area CA1 in whole-cell recordings from rat hippocampal slices. , 1994, Journal of neurophysiology.

[4]  D. Henze,et al.  Origin of the apparent asynchronous activity of hippocampal mossy fibers. , 1997, Journal of neurophysiology.

[5]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[6]  James L. McClelland,et al.  Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade‐off , 1994, Hippocampus.

[7]  E M Glaser,et al.  Neuron imaging with Neurolucida--a PC-based system for image combining microscopy. , 1990, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[8]  Alex S. Ferecskó,et al.  Local Potential Connectivity in Cat Primary Visual Cortex , 2008 .

[9]  D. Chklovskii,et al.  Neurogeometry and potential synaptic connectivity , 2005, Trends in Neurosciences.

[10]  Stephen Grossberg,et al.  Neural expectation: cerebellar and retinal analogs of cells fired by learnable or unlearned pattern classes , 2004, Kybernetik.

[11]  Edward O. Mann,et al.  Role of GABAergic inhibition in hippocampal network oscillations , 2007, Trends in Neurosciences.

[12]  D A Turner,et al.  Feed‐forward inhibitory potentials and excitatory interactions in guinea‐pig hippocampal pyramidal cells. , 1990, The Journal of physiology.

[13]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[14]  Wei-Chung Allen Lee,et al.  A dynamic zone defines interneuron remodeling in the adult neocortex , 2008, Proceedings of the National Academy of Sciences.

[15]  Menno P. Witter,et al.  Entorhinal projections to the hippocampal CA1 region in the rat: An underestimated pathway , 1988, Neuroscience Letters.

[16]  Marzia Martina,et al.  D‐Serine differently modulates NMDA receptor function in rat CA1 hippocampal pyramidal cells and interneurons , 2003, The Journal of physiology.

[17]  D. Madison,et al.  Nicotinic Receptor Activation Excites Distinct Subtypes of Interneurons in the Rat Hippocampus , 1999, The Journal of Neuroscience.

[18]  R. Chitwood,et al.  Passive electrotonic properties of rat hippocampal CA3 interneurones , 1999, The Journal of physiology.

[19]  G. Maccaferri,et al.  Stratum oriens horizontal interneurone diversity and hippocampal network dynamics , 2005, The Journal of physiology.

[20]  C. Bernard,et al.  Model of local connectivity patterns in CA3 and CA1 areas of the hippocampus , 1994, Hippocampus.

[21]  P. Pedarzani,et al.  Medium afterhyperpolarization and firing pattern modulation in interneurons of stratum radiatum in the CA3 hippocampal region. , 2001, Journal of neurophysiology.

[22]  E T Rolls,et al.  Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network , 1992, Hippocampus.

[23]  D Debanne,et al.  Critical Role of Axonal A-Type K+ Channels and Axonal Geometry in the Gating of Action Potential Propagation along CA3 Pyramidal Cell Axons: A Simulation Study , 1998, The Journal of Neuroscience.

[24]  T. Freund,et al.  Types and synaptic connections of hippocampal inhibitory neurons reciprocally connected with the medial septum , 2008, The European journal of neuroscience.

[25]  G Buzsáki,et al.  GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus , 1998, The Journal of Neuroscience.

[26]  G. Barrionuevo,et al.  Electrophysiological and pharmacological characterization of the direct perforant path input to hippocampal area CA3. , 1998, Journal of neurophysiology.

[27]  O. Marín,et al.  Developmental Mechanisms Underlying the Generation of Cortical Interneuron Diversity , 2005, Neuron.

[28]  T. Freund,et al.  Precision and Variability in Postsynaptic Target Selection of Inhibitory Cells in the Hippocampal CA3 Region , 1993, The European journal of neuroscience.

[29]  A. Hendrickson,et al.  Glutamic acid decarboxylase (GAD) immunocytochemistry of developing rabbit hippocampus , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  R. G. M. Morris,et al.  Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats , 1987, Behavioural Brain Research.

[31]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[32]  Eduardo Calixto,et al.  Coincidence detection of convergent perforant path and mossy fibre inputs by CA3 interneurons , 2008, The Journal of physiology.

[33]  Adriano B. L. Tort,et al.  On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus , 2007, Proceedings of the National Academy of Sciences.

[34]  Ferdinando Rossi,et al.  Regulation of intrinsic neuronal properties for axon growth and regeneration , 2007, Progress in Neurobiology.

[35]  J. Lacaille,et al.  Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  W. B. Marks,et al.  Fractal methods and results in cellular morphology — dimensions, lacunarity and multifractals , 1996, Journal of Neuroscience Methods.

[37]  György Buzsáki,et al.  Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo , 2007, Brain Structure and Function.

[38]  R. Yuste,et al.  Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. , 2007, Cerebral cortex.

[39]  M. Moser,et al.  Pattern Separation in the Dentate Gyrus and CA3 of the Hippocampus , 2007, Science.

[40]  N. Tamamaki,et al.  Complete Axon Arborization of a Single CA3 Pyramidal Cell in the Rat Hippocampus, and its Relationship With Postsynaptic Parvalbumin‐containing Interneurons , 1993, The European journal of neuroscience.

[41]  N. Schoppa,et al.  Dendritic processing within olfactory bulb circuits , 2003, Trends in Neurosciences.

[42]  P. Somogyi,et al.  Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus , 2002, Neuroscience.

[43]  G. Shepherd,et al.  Three-Dimensional Structure and Composition of CA3→CA1 Axons in Rat Hippocampal Slices: Implications for Presynaptic Connectivity and Compartmentalization , 1998, The Journal of Neuroscience.

[44]  D A Turner,et al.  Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: Intracellular staining in vivo and in vitro , 1998, The Journal of comparative neurology.

[45]  G. Shepherd,et al.  Geometric and functional organization of cortical circuits , 2005, Nature Neuroscience.

[46]  Morten Raastad,et al.  Conduction latency along CA3 hippocampal axons from rat , 2003, Hippocampus.

[47]  S. Landis,et al.  Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. , 1974, Brain research.

[48]  M. W. Brown,et al.  Input- and layer-dependent synaptic plasticity in the rat perirhinal cortex in vitro , 1999, Neuroscience.

[49]  G. Ascoli,et al.  L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies , 2008, Nature Protocols.

[50]  James J. Knierim,et al.  Ensemble Dynamics of Hippocampal Regions CA3 and CA1 , 2004, Neuron.

[51]  G A Ascoli,et al.  Generation, description and storage of dendritic morphology data. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[52]  J. Lacaille,et al.  Interneuron Diversity series: Hippocampal interneuron classifications – making things as simple as possible, not simpler , 2003, Trends in Neurosciences.

[53]  G. Ascoli Mobilizing the base of neuroscience data: the case of neuronal morphologies , 2006, Nature Reviews Neuroscience.

[54]  Y. Ben‐Ari,et al.  Morphology of CA3 non-pyramidal cells in the developing rat hippocampus. , 2001, Brain research. Developmental brain research.

[55]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[56]  D. Henze,et al.  Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. , 2000, Journal of neurophysiology.

[57]  P. Schwartzkroin,et al.  Axonal ramifications of hippocampal Ca1 pyramidal cells , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  G. Barrionuevo,et al.  Bidirectional Hebbian Plasticity at Hippocampal Mossy Fiber Synapses on CA3 Interneurons , 2008, The Journal of Neuroscience.

[59]  M. Avoli,et al.  Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro , 2002, Progress in Neurobiology.

[60]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[61]  T. Babb,et al.  Demonstration of caudally directed hippocampal efferents in the rat by intracellular injection of horseradish peroxidase , 1981, Brain Research.

[62]  Moritz Helmstaedter,et al.  L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. , 2009, Cerebral cortex.

[63]  Dimitri M Kullmann,et al.  Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination , 2005, Nature Neuroscience.

[64]  O. Steward,et al.  Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat , 1976, The Journal of comparative neurology.

[65]  A. Fisahn,et al.  Kainate receptors and rhythmic activity in neuronal networks: hippocampal gamma oscillations as a tool , 2005, The Journal of physiology.

[66]  C. Houser Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. , 2007, Progress in brain research.

[67]  Morten Raastad,et al.  The hippocampal lamella hypothesis revisited 1 1 Published on the World Wide Web on 12 October 2000. , 2000, Brain Research.

[68]  Chris J. McBain,et al.  State-Dependent cAMP Sensitivity of Presynaptic Function Underlies Metaplasticity in a Hippocampal Feedforward Inhibitory Circuit , 2008, Neuron.

[69]  R. E. Burke,et al.  Comparison of Alternative Designs for Reducing Complex Neurons to Equivalent Cables , 2000, Journal of Computational Neuroscience.

[70]  Y. Kawaguchi,et al.  Physiological heterogeneity of nonpyramidal cells in rat hippocampal CA1 region , 2004, Experimental Brain Research.

[71]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[72]  Giorgio A. Ascoli,et al.  NeuroMorpho.Org Implementation of Digital Neuroscience: Dense Coverage and Integration with the NIF , 2008, Neuroinformatics.

[73]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[74]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[75]  R. Dingledine,et al.  Voltage-controlled plasticity at GluR2-deficient synapses onto hippocampal interneurons. , 2004, Journal of neurophysiology.

[76]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[77]  Michel Geffard,et al.  Gamma-aminobutyric acid-immunoreactivity in the rat hippocampus. A light and electron microscopic study with anti-GABA antibodies , 1986, Brain Research.

[78]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[79]  M. Witter Intrinsic and extrinsic wiring of CA3: indications for connectional heterogeneity. , 2007, Learning & memory.

[80]  Y. Ben‐Ari,et al.  Hippocampal CA1 lacunosum-moleculare interneurons: modulation of monosynaptic GABAergic IPSCs by presynaptic GABAB receptors. , 1995, Journal of neurophysiology.

[81]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[82]  D. Chklovskii,et al.  Class-Specific Features of Neuronal Wiring , 2004, Neuron.

[83]  C. McBain,et al.  Interneuron Diversity series: Containing the detonation – feedforward inhibition in the CA3 hippocampus , 2003, Trends in Neurosciences.

[84]  R. Chitwood,et al.  Calcium-dependent spike-frequency accommodation in hippocampal CA3 nonpyramidal neurons. , 1998, Journal of neurophysiology.

[85]  György Buzsáki,et al.  Hippocampal CA3 pyramidal cells selectively innervate aspiny interneurons , 2006, The European journal of neuroscience.

[86]  J. Lacaille,et al.  Ultrastructure of stratum lacunosum moleculare interneurons of hippocampal CA1 region , 1988, Synapse.

[87]  T. Sejnowski,et al.  Synaptic plasticity in morphologically identified CA1 stratum radiatum interneurons and giant projection cells , 2000, Hippocampus.

[88]  Dennis A. Turner,et al.  Interneurons of the Dentate–Hilus Border of the Rat Dentate Gyrus: Morphological and Electrophysiological Heterogeneity , 1997, The Journal of Neuroscience.

[89]  Maria Blatow,et al.  Molecular diversity of neocortical GABAergic interneurones , 2005, The Journal of physiology.

[90]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[91]  N. Tamamaki,et al.  Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure‐injection of neurobiotin , 1993, Hippocampus.

[92]  G. Ascoli,et al.  Morphological homeostasis in cortical dendrites , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[93]  P. Somogyi,et al.  Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[94]  D. Kullmann,et al.  Long-term synaptic plasticity in hippocampal interneurons , 2007, Nature Reviews Neuroscience.

[95]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[96]  Peter Somogyi,et al.  Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of synaptic release sites , 1994, Nature.

[97]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[98]  Horacio G Rotstein,et al.  Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[99]  D. Amaral,et al.  A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus , 1986, The Journal of comparative neurology.

[100]  R. Burke,et al.  Membrane area and dendritic structure in type‐identified triceps surae alpha motoneurons , 1987, The Journal of comparative neurology.

[101]  H. Markram,et al.  Neuropeptide and calcium‐binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat , 2005, The Journal of physiology.

[102]  J. Lisman Relating Hippocampal Circuitry to Function Recall of Memory Sequences by Reciprocal Dentate–CA3 Interactions , 1999, Neuron.

[103]  R. Yuste Origin and Classification of Neocortical Interneurons , 2005, Neuron.

[104]  T. Freund,et al.  GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus , 1988, Nature.

[105]  C. McBain,et al.  Synaptic plasticity in hippocampal interneurons? A commentary. , 1997, Canadian journal of physiology and pharmacology.

[106]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.