An acousto-optically steered laser scanning system for measurement of action potential spread in intact heart.
暂无分享,去创建一个
An optical scanning device that combines a voltage-sensitive dye and an acousto-optically steered He-Ne laser beam is described. This device is capable of scanning 128 sites every 4 ms and recording and storing the fluorescence signals for a duration of up to 1 s (several beats). Comparison of an activation map constructed from laser scanning to those obtained from multiple extracellular electrodes suggests that this technique is highly reliable. Although motion-induced light scattering appears to alter the shape of the action potential, the upstroke can be distinguished quite reliably even in a vigorously contracting muscle. This technique provides high resolution (up to 50 micron) and high flexibility (i.e., the scanned sites can be concentrated over a small or very large area) in measuring the spread of activation in heart muscle. By having only one excitation and one measurement element, the approach offers simplicity and high flexibility to the user. We have shown that this system can be readily applied to the task for which it was intended--probing the mechanisms of arrhythmias in the mammalian myocardium. It has been demonstrated, for example, that arrhythmias due to automaticity can be readily distinguished from those due to reentry through the mapping capability of the laser scanner. In addition, the ability of laser scanner to measure membrane depolarization directly during arrhythmias may make this technique superior to conventional electrocardiographic mapping techniques.