Reasoning about Strategies

Samson Abramsky has placed landmarks in the world of logic and games that I have long admired. In this little piece, I discuss one theme in the overlap of our interests, namely, logical systems for reasoning with strategies - in gentle exploratory mode.

[1]  Johan van Benthem,et al.  Modelling simultaneous games in dynamic logic , 2008, Synthese.

[2]  Igor Walukiewicz,et al.  On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic , 1996, CONCUR.

[3]  Johan van Benthem,et al.  Game Solution, Epistemic Dynamics and Fixed-Point Logics , 2010, Fundam. Informaticae.

[4]  Johan van Benthem,et al.  Logic in Games , 2014 .

[5]  Andrés Perea,et al.  Epistemic Game Theory , 2012 .

[6]  Johan van Benthem,et al.  The Tree of Knowledge in Action: Towards a Common Perspective , 2006, Advances in Modal Logic.

[7]  Johan van Benthem,et al.  Extensive Games as Process Models , 2002, J. Log. Lang. Inf..

[8]  R. Parikh The logic of games and its applications , 1985 .

[9]  David Janin Automata, logics, and infinite games: A guide to current research, edited by Erich Grädel, Wolfgang Thomas, and Thomas Wilke, Lecture Notes in Computer Science, vol. 2500 (Tutorial). Springer-Verlag, Berlin Heidelberg, 2002, viii + 385 pp. , 2004, Bulletin of Symbolic Logic.

[10]  Helle Hvid Hansen,et al.  Neighbourhood Structures: Bisimilarity and Basic Model Theory , 2009, Log. Methods Comput. Sci..

[11]  Johan van Benthem,et al.  Dynamic logic of preference upgrade , 2007, J. Appl. Non Class. Logics.

[12]  J. Benthem,et al.  Handbook on the Philosophy of Information , 2006 .

[13]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[14]  Johan van Benthem,et al.  In Praise of Strategies , 2012, Games, Actions and Social Software.

[15]  E. Allen Emerson,et al.  Tree automata, mu-calculus and determinacy , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[16]  W. Hamilton,et al.  The evolution of cooperation. , 1984, Science.

[17]  Jan van Eijck,et al.  PDL as a Multi-Agent Strategy Logic , 2013, TARK.

[18]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .