Art Gallery and Illumination Problems

Abstract In 1973, Victor Klee posed the following question: How many guards are necessary, and how many are sufficient to patrol the paintings and works of art in an art gallery with n walls? This wonderfully naive question of combinatorial geometry has, since its formulation, stimulated a plethora of papers, surveys and a book, most of them written in the last fifteen years. The first result in this area, due to V. Chvatal, asserts that n 3 guards are occasionally necessary and always sufficient to guard an art gallery represented by a simple polygon with n vertices. Since ChvataFs result, numerous variations on the art gallery problem have been studied, including mobile guards, guards with limited visibility or mobility, illumination of families of convex sets on the plane, guarding of rectilinear polygons, and others. In this paper, we survey most of these results.

[1]  Simeon C. Ntafos,et al.  Covering Grids and Orthogonal Polygons with Periscope Guards , 1992, Comput. Geom..

[2]  Hazel Everett,et al.  The Aquarium Keeper's Problem , 1991, SODA '91.

[3]  Gregorio Hernández-Peñalver Controlling Guards , 1994, CCCG.

[4]  Iliana Bjorling-Sachs Variations on the art gallery theorem , 1993 .

[5]  Jorge Urrutia,et al.  Optimal floodlight illumination of stages , 1998, SCG '98.

[6]  Jorge Urrutia,et al.  Galleries, Light Matchings and Visibility Graphs , 1989, WADS.

[7]  Jorge Urrutia,et al.  Illumination of Orthogonal Polygons with Orthogonal Floodlights , 1998, Int. J. Comput. Geom. Appl..

[8]  David Glasser,et al.  The Complexity of Illuminating Polygons by alpha-flood-lights , 1996, CCCG.

[9]  J. Kahn,et al.  Traditional Galleries Require Fewer Watchmen , 1983 .

[10]  Godfried T. Toussaint,et al.  An Optimal Algorithm for Determining the Visibility of a Polygon from an Edge , 1981, IEEE Transactions on Computers.

[11]  Simeon C. Ntafos,et al.  Watchman Routes Under Limited Visibility , 1991, Comput. Geom..

[12]  W. T. Tutte The Factorization of Linear Graphs , 1947 .

[13]  Michael Kaufmann,et al.  On the Rectilinear Art Gallery Problem - Algorithmic Aspects , 1990, WG.

[14]  Siu-Ming Yiu,et al.  Edge Guards on a Fortress , 1994, CCCG.

[15]  Laxmi Gewali,et al.  Placing Guards Inside Orthogonal Polygons , 1996, Inf. Sci..

[16]  V. Rich Personal communication , 1989, Nature.

[17]  Frank Hoffmann,et al.  A Graph-Coloring Result and Its Consequences For Polygon-Guarding Problems , 1996, SIAM J. Discret. Math..

[18]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[19]  Diane L. Souvaine,et al.  An efficient algorithm for guard placement in polygons with holes , 1995, Discret. Comput. Geom..

[20]  John Hershberger,et al.  An Efficient Solution to the Zookeeper's Problem , 1994, CCCG.

[21]  Svante Carlsson,et al.  Guarding a Treasury , 1993, CCCG.

[22]  Steve Fisk,et al.  A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.

[23]  David Avis,et al.  A Linear Algorithm for Computing the Visibility Polygon from a Point , 1981, J. Algorithms.

[24]  V. Chvátal A combinatorial theorem in plane geometry , 1975 .

[25]  Takao Nishizeki,et al.  Lower bounds on the cardinality of the maximum matchings of planar graphs , 1979, Discret. Math..

[26]  Godfried T. Toussaint,et al.  An Efficient Algorithm for Decomposing a Polygon into Star-Shaped Polygons , 1981 .

[27]  T. Shermer Recent Results in Art Galleries , 1992 .

[28]  Victor Klee Is Every Polygonal Region Illuminable from Some Point , 1969 .

[29]  Paul J. Heffernan,et al.  An optimal algorithm for the two-guard problem , 1993, SCG '93.

[30]  Ervin Györi A short proof of the rectilinear art gallery theorem , 1986 .

[31]  Joseph C. Culberson,et al.  Covering polygons is hard , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[32]  Ileana Streinu,et al.  Illumination by floodlights , 1998, Comput. Geom..

[33]  Jorge Urrutia,et al.  Protecting convex sets , 1994, Graphs Comb..

[34]  Richard C. T. Lee,et al.  The Minimum Cooperative Guards Problem on K-spiral Polygons , 1993, CCCG.

[35]  Ivan Stojmenovic,et al.  Computing External Watchman Routes on Pram, BSR, and Interconnection Network Models of Parallel Computation , 1994, Parallel Process. Lett..

[36]  J. O'Rourke An alternate proof of the rectilinear art gallery theorem , 1983 .

[37]  Simeon C. Ntafos,et al.  Watchman Routes in the Presence of a Pair of Convex Polygons , 1998, Inf. Sci..

[38]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[39]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[40]  J. Mark Keil,et al.  Decomposing a Polygon into Simpler Components , 1985, SIAM J. Comput..

[41]  David G. Kirkpatrick,et al.  Efficient Algorithms for Guarding or Illuminating the Surface of a Polyhedral Terrain , 1996, CCCG.

[42]  Jorge Urrutia,et al.  On illuminating line segments in the plane , 1995, Discret. Math..

[43]  Godfried T. Toussaint,et al.  Guard Placement in Rectilinear Polygons , 1988 .

[44]  B. Chazelle,et al.  Optimal Convex Decompositions , 1985 .

[45]  Joseph O'Rourke,et al.  Galleries need fewer mobile guards: A variation on Chvátal's theorem , 1983 .

[46]  George William Tokarsky,et al.  Polygonal Rooms Not Illuminable from Every Point , 1995 .

[47]  Jorge Urrutia,et al.  Illumination of Polygons with Vertex Lights , 1995, Inf. Process. Lett..

[48]  Prosenjit Bose,et al.  K-Guarding Polygons on the Plane , 1994, CCCG.

[49]  XUEHOU TAN,et al.  Corrigendum to "An Incremental Algorithm for Constructing Shortest Watchman Routes" , 1999, Int. J. Comput. Geom. Appl..

[50]  Danny Ziyi Chen,et al.  An optimal parallel algorithm for detecting weak visibility of a simple polygon , 1992, SCG '92.

[51]  John Hershberger,et al.  Finding the visibility graph of a simple polygon in time proportional to its size , 1987, SCG '87.

[52]  L. Tóth Illumination of convex discs , 1977 .

[53]  Anna Lubiw,et al.  Decomposing polygonal regions into convex quadrilaterals , 1985, SCG '85.

[54]  Wei-Pand Chin,et al.  Shortest watchman routes in simple polygons , 1990, Discret. Comput. Geom..

[55]  Masafumi Yamashita,et al.  The Searchlight Scheduling Problem , 1990, SIAM J. Comput..

[56]  Joseph S. B. Mitchell,et al.  Path planning in 0/1/ weighted regions with applications , 1988, SCG '88.

[57]  Thomas C. Shermer,et al.  Illuminating convex polygonswith vertex floodlight , 1995, CCCG.

[58]  Simeon C. Ntafos,et al.  Optimum watchman routes , 1986, SCG '86.

[59]  Thomas C. Shermer,et al.  Generalized Guarding and Partitioning for Rectilinear Polygons , 1996, Comput. Geom..

[60]  Joseph S. B. Mitchell,et al.  Path Planning in 0/1/ Weighted Regions with Applications , 1990, INFORMS J. Comput..

[61]  Tomio Hirata,et al.  Constructing Shortest Watchman Routes by Divide-and-Conquer , 1993, ISAAC.

[62]  Simeon C. Ntafos,et al.  The zookeeper route problem , 1992, Inf. Sci..

[63]  Danny Ziyi Chen,et al.  Optimal guarding of polygons and monotone chains , 1995, CCCG.

[64]  Rolf Klein,et al.  The two guards problem , 1991, SCG '91.

[65]  Géza Tóth,et al.  Ote on an Art Gallery Problem , 1998, Comput. Geom..

[66]  Simeon C. Ntafos,et al.  The Robber Route Problem , 1990, Inf. Process. Lett..

[67]  Jesús García López de la Calle Problemas algorítmico-combinatorios de visibilidad , 1995 .

[68]  C. E. Veni Madhavan,et al.  Shortest Watchman Tours in Weak Visibility Polygons , 1993, CCCG.

[69]  Jorge Urrutia,et al.  Illuminating Rectangles and Triangles in the Plane , 1993, J. Comb. Theory, Ser. B.

[70]  D. T. Lee,et al.  An Optimal Algorithm for Finding the Kernel of a Polygon , 1979, JACM.

[71]  Masafumi Yamashita,et al.  Searching for a Mobile Intruder in a Polygonal Region , 1992, SIAM J. Comput..

[72]  Prosenjit Bose,et al.  Guarding Polyhedral Terrains , 1997, Comput. Geom..

[73]  Shivakumar Viswanathan The Edge Guard Problem for Spiral Polygons , 1993, CCCG.

[74]  Tomio Hirata,et al.  An incremental algorithm for constructing shortest watchman routes , 1993, Int. J. Comput. Geom. Appl..

[75]  Thomas C. Shermer On recognizing unions of two convex polygons and related problems , 1993, Pattern Recognit. Lett..

[76]  Robert E. Tarjan,et al.  Triangulating a Simple Polygon , 1978, Inf. Process. Lett..

[77]  Leonidas J. Guibas,et al.  The Floodlight Problem , 1997, Int. J. Comput. Geom. Appl..

[78]  Patrice Belleville On Restricted Boundary Covers and Convex Three-Covers , 1993, CCCG.

[79]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.

[80]  Ileana Streinu,et al.  Positive and Negative Results on the Floodlight Problem , 1994, CCCG.

[81]  William J. Lenhart,et al.  An art gallery theorem for line segments in the plane , 1993, Pattern Recognit. Lett..

[82]  Jorge Urrutia,et al.  Hiding points in arrangements of segments , 1996, Discret. Math..

[83]  Henk Meijer,et al.  Motivating lazy guards , 1995, CCCG.

[84]  Jorge Urrutia,et al.  Guarding rectangular art galleries , 1994, Discret. Appl. Math..

[85]  Hans-Dietrich Hecker,et al.  Two NP-Hard Art-Gallery Problems for Ortho-Polygons , 1995, Math. Log. Q..

[86]  Robert E. Tarjan,et al.  An O(n log log n)-Time Algorithm for Triangulating a Simple Polygon , 1988, SIAM J. Comput..

[87]  D. T. Lee,et al.  On a Circle-Cover Minimization Problem , 1984, Inf. Process. Lett..

[88]  Alok Aggarwal,et al.  Computational Complexity of Restricted Polygon Decompositions , 1988 .

[89]  A. Aggarwal The art gallery theorem: its variations, applications and algorithmic aspects , 1984 .

[90]  David Avis,et al.  A combinational approach to polygon similarity , 1983, IEEE Trans. Inf. Theory.

[91]  Zoltán Füredi,et al.  The prison yard problem , 1994, Comb..

[92]  Thomas C. Shermer,et al.  Visibility properties of polygons , 1989 .

[93]  Jorg-Rudiger Wolfgang Sack,et al.  Rectilinear computational geometry , 1984 .

[94]  Svante Carlsson,et al.  Optimum Guard Covers and m-Watchmen Routes for Restricted Polygons , 1991, WADS.

[95]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[96]  Hans-Dietrich Hecker,et al.  Some NP-hard Polygon Cover Problems , 1989, J. Inf. Process. Cybern..

[97]  Siu-Ming Yiu A generalized fortress problem using k-consecutive vertex guards , 1995, CCCG.

[98]  J. O'Rourke,et al.  Stationing guards in rectilinear art galleries , 1984 .

[99]  Andrzej Lingas,et al.  The Power of Non-Rectilinear Holes , 1982, ICALP.

[100]  W. T. Tutte A THEOREM ON PLANAR GRAPHS , 1956 .

[101]  Jorge Urrutia,et al.  Illuminating high-dimensional convex sets , 1995 .