A shock-fitting technique for cell-centered finite volume methods on unstructured dynamic meshes

Abstract In this work, the shock-fitting technique is further developed on unstructured dynamic meshes. The shock wave is fitted and regarded as a special boundary, whose boundary conditions and boundary speed (shock speed) are determined by solving Rankine–Hugoniot relations. The fitted shock splits the entire computational region into subregions, in which the flows are free from shocks and flow states are solved by a shock-capturing code based on arbitrary Lagrangian–Eulerian algorithm. Along with the motion of the fitted shock, an unstructured dynamic meshes algorithm is used to update the internal node's position to maintain the high quality of computational meshes. The successful applications prove the present shock-fitting to be a valid technique.

[1]  David A. Kopriva,et al.  Shock-fitted multidomain solution of supersonic flows , 1999 .

[2]  H. C. Yee,et al.  Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates , 1987 .

[3]  J. Batina Unsteady Euler airfoil solutions using unstructured dynamic meshes , 1989 .

[4]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[5]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[6]  G. Moretti,et al.  A time-dependent computational method for blunt body flows. , 1966 .

[7]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[8]  H. C. Yee,et al.  High-Resolution Shock-Capturing Schemes for Inviscid and Viscous Hypersonic Flows , 1990 .

[9]  Renato Paciorri,et al.  A shock-fitting technique for 2D unstructured grids , 2009 .

[10]  M. D. Salas,et al.  Shock Fitting Method for Complicated Two-Dimensional Supersonic Flows , 1976 .

[11]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[12]  James M. Hyman,et al.  On Finite-Difference Approximations and Entropy Conditions for Shocks , 2015 .

[13]  P. Hartwich,et al.  Fresh look at floating shock fitting , 1990 .

[14]  Renato Paciorri,et al.  Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique , 2011, J. Comput. Phys..

[15]  Manuel D. Salas,et al.  A Shock-Fitting Primer , 2009 .

[16]  Philip L. Roe,et al.  On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows , 1997 .

[17]  H. J. Zhang The exploration of the spatial oscillations in finite difference solutions for Navier-Stokes shocks , 1984 .

[18]  M. Carpenter,et al.  Accuracy of Shock Capturing in Two Spatial Dimensions , 1999 .

[19]  R. Maccormack,et al.  The Effect of Viscosity in Hypervelocity Impact Cratering , 2003 .

[20]  Pradeep Singh Rawat,et al.  On high-order shock-fitting and front-tracking schemes for numerical simulation of shock-disturbance interactions , 2010, J. Comput. Phys..

[21]  Francesco Nasuti,et al.  Analysis of unsteady supersonic viscous flows by a shock-fitting technique , 1996 .

[22]  Jean-Yves Trépanier,et al.  A Conservative Shock Fitting Method on Unstructured Grids , 1996 .

[23]  Renato Paciorri,et al.  Unsteady shock‐fitting for unstructured grids , 2016 .

[24]  Philip L. Roe,et al.  A grid-independent approximate Riemann solver with applications to the Euler and Navier-Stokes equations , 1991 .

[25]  P. Lax,et al.  Systems of conservation laws , 1960 .

[26]  Xiaolin Zhong,et al.  Spurious Numerical Oscillations in Numerical Simulation of Supersonic Flows Using Shock Capturing Schemes , 1999 .

[27]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[28]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[29]  H. C. Yee,et al.  Aspects of Numerical Uncertainties in Time Marching to Steady-State Numerical Solutions , 1998 .

[30]  Renato Paciorri,et al.  An unstructured, three-dimensional, shock-fitting solver for hypersonic flows , 2013 .

[31]  X. Wang,et al.  High-order shock-fitting methods for direct numerical simulation of hypersonic flow with chemical and thermal nonequilibrium , 2011, J. Comput. Phys..

[32]  Sergio Pirozzoli,et al.  Shock-Wave–Vortex Interactions: Shock and Vortex Deformations, and Sound Production , 2000 .

[33]  V. Venkatakrishnan On the accuracy of limiters and convergence to steady state solutions , 1993 .

[34]  A. Dadone,et al.  A multi-dimensional upwind scheme for the Euler equations , 1993 .