Locus-Control-Region-Coupled Beta (S)(Antilles)- and Alpha(2)-Hemoglobin Genes Select for High Alpha(2)-Hemoglobin Expression in Adult Transgenic Mice.

[1]  J. D. Engel Developmental regulation of human beta-globin gene transcription: a switch of loyalties? , 1993, Trends in genetics : TIG.

[2]  J. Boyle,et al.  Rapid determination of sequences flanking microsatellites using dephosphorylated cloning vectors. , 1993, Trends in genetics : TIG.

[3]  R. Nagel,et al.  High expression of human beta S- and alpha-globins in transgenic mice: erythrocyte abnormalities, organ damage, and the effect of hypoxia. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  F. Grosveld,et al.  Importance of globin gene order for correct developmental expression. , 1991, Genes & development.

[5]  J. Strouboulis,et al.  The Dominant Control Region of the Human β‐Globin Domain , 1990 .

[6]  S. Orkin Globin gene regulation and switching: Circa 1990 , 1990, Cell.

[7]  R. Palmiter,et al.  Human sickle hemoglobin in transgenic mice. , 1990, Science.

[8]  M. Vidal,et al.  A transgenic mouse model of sickle cell disorder , 1990, Nature.

[9]  M. Vidal,et al.  High-level, erythroid-specific expression of the human alpha-globin gene in transgenic mice and the production of human hemoglobin in murine erythrocytes. , 1989, Genes & development.

[10]  T Asakura,et al.  Synthesis of functional human hemoglobin in transgenic mice. , 1989, Science.

[11]  N. Martin,et al.  A single erythroid-specific DNase I super-hypersensitive site activates high levels of human beta-globin gene expression in transgenic mice. , 1989, Genes & development.

[12]  M. Vidal,et al.  A dominant control region from the human β-globin locus conferring integration site-independent gene expression , 1989, Nature.

[13]  S. Karlsson,et al.  Expression of the human beta-globin gene following retroviral-mediated transfer into multipotential hematopoietic progenitors of mice. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Kollias,et al.  Position-independent, high-level expression of the human β-globin gene in transgenic mice , 1987, Cell.

[15]  M. Vidaud,et al.  Hemoglobin S Antilles: a variant with lower solubility than hemoglobin S and producing sickle cell disease in heterozygotes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[16]  James T. Elder,et al.  A developmentally stable chromatin structure in the human beta-globin gene cluster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Tuan,et al.  The "beta-like-globin" gene domain in human erythroid cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[18]  E. Shinar,et al.  Alterations in Membrane Protein and Phosphorylation Pattern in β‐Thalassemic Red Blood Cells , 1985, Annals of the New York Academy of Sciences.

[19]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[20]  L. Skow,et al.  A mouse model for β-thalassemia , 1983, Cell.

[21]  L. Skow,et al.  A Mouse Model for b-Thalassemia , 1982 .

[22]  J. Brown,et al.  Genetic differences in red cell osmotic fragility: analysis in allophenic mice. , 1982, Blood.

[23]  B. Alter,et al.  Globin Chain Electrophoresis: a New Approach to the Determination of the Gγ/Aγ Ratio in Fetal Haemoglobin and to Studies of Globin Synthesis , 1980 .

[24]  J. B. WhitneyIII Simplified typing of mouse hemoglobin (Hbb) phenotypes using cystamine , 1978 .

[25]  G. Rovera,et al.  Reselution of hemoglobin subunits by electrophoresis in acid urea polyacrylamide gels containing Triton X-100 , 1978 .