Codes and Sequences Over ℤ4 — A Tutorial Overview

This article provides an elementary overview of quaternary i.e., ℤ4 codes and sequences and assumes very little background. It begins with a discussion of binary m-sequences and uses the excellent autocorrelation properties of these sequences to motivate the study of finite fields. This is followed by a discussion of the family of Gold sequences.

[1]  S. Golomb Construction of Signals with Favorable Correlation Properties , 1999 .

[2]  P. Vijay Kumar,et al.  4-phase Sequences with Near-optimum Correlation Properties , 1992, IEEE Trans. Inf. Theory.

[3]  M.B. Pursley,et al.  Crosscorrelation properties of pseudorandom and related sequences , 1980, Proceedings of the IEEE.

[4]  A. Robert Calderbank,et al.  Large families of quaternary sequences with low correlation , 1996, IEEE Trans. Inf. Theory.

[5]  Franco P. Preparata A Class of Optimum Nonlinear Double-Error-Correcting Codes , 1968, Inf. Control..

[6]  Dieter Jungnickel,et al.  Difference Sets: An Introduction , 1999 .

[7]  T. Helleseth,et al.  On the weight hierarchy of Kerdock codes over Z4 , 1996, IEEE Trans. Inf. Theory.

[8]  Marvin K. Simon,et al.  Spread Spectrum Communications Handbook , 1994 .

[9]  Sascha Barg On small families of sequences with low periodic correlation , 1993, Algebraic Coding.

[10]  Tor Helleseth,et al.  Improved binary codes and sequence families from Z4-linear codes , 1996, IEEE Trans. Inf. Theory.

[11]  Mohammad Umar Siddiqi,et al.  Optimal biphase sequences with large linear complexity derived from sequences over Z4 , 1996, IEEE Trans. Inf. Theory.

[12]  B. R. McDonald Finite Rings With Identity , 1974 .

[13]  Marvin K. Simon,et al.  Spread spectrum communications handbook (revised ed.) , 1994 .

[14]  A. Nechaev,et al.  Kerdock code in a cyclic form , 1989 .

[15]  Jerry D. Gibson,et al.  Mobile Communications Handbook , 1999 .

[16]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[17]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[18]  Tor Helleseth,et al.  Exponential sums over Galois rings and their applications , 1996 .

[19]  Patrick Solé,et al.  A quaternary cyclic code, and a family of quadriphase sequences with low correlation properties , 1989, Coding Theory and Applications.

[20]  Robert Gold,et al.  Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.

[21]  A. Robert Calderbank,et al.  An upper bound for Weft exponential sums over Galois tings and applications , 1994, IEEE Trans. Inf. Theory.

[22]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[23]  L. Carlitz,et al.  Bounds for exponential sums , 1957 .

[24]  Anthony M. Kerdock,et al.  A Class of Low-Rate Nonlinear Binary Codes , 1972, Inf. Control..

[25]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .