Statistically Coherent Calibration of X-Ray Fluorescence Spectrometry for Major Elements in Rocks and Minerals
暂无分享,去创建一个
S. K. Verma | S. Verma | F. Velasco-Tapia | Mauricio Rosales-Rivera | L. Díaz-González | K. Pandarinath | M. A. Rivera-Gómez | H. López-Loera | B. A. Rivera-Escoto | Darío Torres‐Sánchez | J. Armstrong-Altrin | Alejandra Amezcua-Valdez | M. Rosales-Rivera
[1] M. Rosales. A NEW ONLINE COMPUTER PROGRAM (BIDASYS) FOR ORDINARY AND UNCERTAINTY WEIGHTED LEAST-SQUARES LINEAR REGRESSIONS: CASE STUDIES FROM FOOD CHEMISTRY , 2018 .
[2] S. Verma,et al. A NEW ONLINE COMPUTER PROGRAM (BIDASYS) FOR ORDINARY AND UNCERTAINTY WEIGHTED LEAST-SQUARES LINEAR REGRESSIONS: CASE STUDIES FROM FOOD CHEMISTRY , 2018 .
[3] S. Verma,et al. Improved composition of Hawaiian basalt BHVO-1 from the application of two new and three conventional recursive discordancy tests , 2017 .
[4] S. Verma,et al. Quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material , 2016, Arabian Journal of Geosciences.
[5] G. Haug,et al. Reference Values Following ISO Guidelines for Frequently Requested Rock Reference Materials , 2016 .
[6] S. Verma,et al. Univariate data analysis system: deciphering mean compositions of island and continental arc magmas, and influence of the underlying crust , 2013 .
[7] Tao Xu,et al. Applications of X-ray fluorescence analysis of rare earths in China , 2010 .
[8] Surendra P. Verma,et al. Relative Efficiency of Single‐Outlier Discordancy Tests for Processing Geochemical Data on Reference Materials and Application to Instrumental Calibrations by a Weighted Least‐Squares Linear Regression Model , 2009 .
[9] J. Tellinghuisen. Weighted least-squares in calibration: what difference does it make? , 2007, The Analyst.
[10] Toshihiro Nakamura,et al. Glass beads/x-ray fluorescence analyses of 42 components in felsic rocks† , 2007 .
[11] N. Coffey,et al. A note on the use of outlier criteria in Ontario laboratory quality control schemes. , 2007, Clinical biochemistry.
[12] L. Bédard. Neutron Activation Analysis, Atomic Absorption and X‐Ray Fluorescence Spectrometry Review for 2004–2005 , 2006 .
[13] Richard M. Rousseau,et al. Corrections for matrix effects in X-ray fluorescence analysis—A tutorial , 2006 .
[14] A. G. Asuero,et al. The Correlation Coefficient: An Overview , 2006 .
[15] S. Verma,et al. Comparison of Linear Regression Models for Quantitative Geochemical Analysis: An Example Using X‐Ray Fluorescence Spectrometry , 2005 .
[16] Eric R. Ziegel,et al. Statistics and Chemometrics for Analytical Chemistry , 2004, Technometrics.
[17] A. G. Asuero,et al. Fitting Straight Lines with Replicated Observations by Linear Regression: Part II. Testing for Homogeneity of Variances , 2004 .
[18] Xiao-hong Wang,et al. Determination of Major/ Minor and Trace Elements in Seamount Phosphorite by XRF Spectrometry , 2004 .
[19] J. P. Willis,et al. A new approach to correcting theoretical emitted intensities for absorption and enhancement effects , 2004 .
[20] J. P. Willis,et al. Comparison between some common influence coefficient algorithms , 2004 .
[21] J. Enzweiler,et al. Analysis of Sediments and Soils by X‐Ray Fluorescence Spectrometry Using Matrix Corrections Based on Fundamental Parameters , 2004 .
[22] Ana Sayago,et al. Fitting Straight Lines with Replicated Observations by Linear Regression: The Least Squares Postulates , 2004 .
[23] R. Rousseau. Correction for long‐term instrumental drift , 2002 .
[24] B. I. Kitov. Calculation features of the fundamental parameter method in XRF , 2000 .
[25] P. Cambon,et al. Determination of Forty Four Major and Trace Elements in GPMA Magmatic Rock Reference Materials using X‐ray Fluorescence Spectrometry (XRF) and Instrumental Neutron Activation Analysis (INAA) , 1999 .
[26] A. Schick. Improving weighted least-squares estimates in heteroscedastic linear regression when the variance is a function of the mean response , 1999 .
[27] Wei-Che Sun,et al. Correction method for the matrix effect in x-ray fluorescence spectrometric analysis , 1998 .
[28] R. Gibbons,et al. Weighted least-squares approach to calculating limits of detection and quantification by modeling variability as a function of concentration. , 1997, Analytical chemistry.
[29] J. P. Willis,et al. Practical XRF Calibration Procedures for Major and Trace Elements , 1996 .
[30] K. Mahon. The New “York” Regression: Application of an Improved Statistical Method to Geochemistry , 1996 .
[31] Atsushi Ando,et al. 1994 compilation of analytical data for minor and trace elements in seventeen GSJ geochemical reference samples, "Igneous rock series" , 1995 .
[32] K. Govindaraju. 1995 WORKING VALUES WITH CONFIDENCE LIMITS FOR TWENTY-SIX CRPG, ANRT AND IWG-GIT GEOSTANDARDS , 1995 .
[33] Janick F Artiola,et al. Using Geochemical Data: Evaluation, Presentation, Interpretation , 1994 .
[34] S. Terashima,et al. THREE NEW GSJ ROCK REFERENCE SAMPLES: RHYOLITE JR-3, GABBRO JGB-2 AND HORNBLENDITE JH-1 , 1993 .
[35] S. Verma,et al. DETERMINATION OF TWELVE TRACE ELEMENTS IN TWENTY‐SEVEN AND TEN MAJOR ELEMENTS IN TWENTY‐THREE GEOCHEMICAL REFERENCE SAMPLES BY X‐RAY FLUORESCENCE SPECTROMETRY , 1992 .
[36] Margaret West,et al. X-ray fluorescence spectrometry , 1999 .
[37] E. A. Jones,et al. 1988 Compilation of Elemental Concentration Data for USGS DTS-1, G-1, PCC-1 and W-1 , 1991 .
[38] A. Kalantar. Weighted least squares evaluation of slope from data having errors , 1990 .
[39] I. Roelandts,et al. 1988 Compilation of Elemental Concentration Data for USGS Geochemical Exploration Reference Materials GXR-1 to GXR-6 , 1990 .
[40] Y. Kanai,et al. Elemental Concentrations in Nine New GSJ Rock Reference Samples “Sedimentary Rock Series” , 1990 .
[41] I. Roelandts,et al. 1987 Compilation of Elemental Concentration Data for USGS BHVO‐1, MAG‐1, QLO‐1, RGM‐1, SCo‐1, SDC‐1, SGR‐1 and STM‐1 , 1988 .
[42] John B. Willett,et al. Another Cautionary Note about R 2: Its Use in Weighted Least-Squares Regression Analysis , 1988 .
[43] I. Roelandts,et al. 1987 Compilation of Elemental Concentration Data for USGS BIR‐1, DNC‐1 and W‐2 , 1988 .
[44] K. Govindaraju. 1987 Compilation Report on Ailsa Craig Granite AC‐E With the Participation of 128 GIT‐IWG Laboratories , 1987 .
[45] J. W. Hosterman,et al. USGS Reference Samples Attapulgite ATT‐1 and Bentonite CSB‐1 , 1987 .
[46] F. J. Flanagan. Rock Reference samples, San Marcos Gabbro, GSM‐1 and Lakeview Mountain Tonalite, TLM‐1 , 1986 .
[47] K. Govindaraju. Report (1973–1984) on Two ANRT Geochemical Reference Samples: Granite GS-N and Potash Feldspar FK-N , 1984 .
[48] I. Roelandts,et al. 1982 Compilation of Elemental Concentration Data for the United States Geological Survey's Geochemical Exploration Reference Samples GXR ‐1 to GXR ‐ 6 , 1984 .
[49] K. Govindaraju. Report (1984) on Two GIT‐IWG Geochemical Reference Samples: Albite from Italy, AL‐I And Iron Formation Sample from Greenland, IF‐G , 1984 .
[50] Richard M. Rousseau,et al. Fundamental algorithm between concentration and intensity in XRF analysis 2—practical application† , 1984 .
[51] K. Govindaraju. Report (1967–1981) on Four ANRT Rock Reference Samples: Diorite DR‐N, Serpentine UB‐N, Bauxite BX‐N and Disthene DT‐N , 1982 .
[52] M. C. Bennett,et al. XRF Determination of 19 Trace Elements In International Geochemical Reference Samples , 1981 .
[53] K. Govindaraju. Report (1980) on Three GIT‐IWG Rock Reference Samples: Anorthosite from Greenland, AN‐G; Basalte d'Essey‐la‐Côte, BE‐N; Granite de Beauvoir, MA‐N , 1980 .
[54] W. R. Buckland. Outliers in Statistical Data , 1979 .
[55] K. Govindaraju. Report (1968–1978) on Two Mica Reference Samples: Biotite Mica-Fe and Phlogopite Mica-Mg , 1979 .
[56] A. Wilson,et al. Major Element Data (1966–1978) for The Six “Nimroc” Reference Samples , 1978 .
[57] Bernard Rosner,et al. On the Detection of Many Outliers , 1975 .
[58] F. E. Grubbs,et al. Extension of Sample Sizes and Percentage Points for Significance Tests of Outlying Observations , 1972 .
[59] Nobukatsu Fujino,et al. Theoretical Calculation of Fluorescent X-Ray Intensities in Fluorescent X-Ray Spectrochemical Analysis. , 1966 .
[60] S. Verma,et al. Erratum to: Quality control in geochemistry from a comparison of four central tendency and five dispersion estimators and example of a geochemical reference material , 2017, Arabian Journal of Geosciences.
[61] H. Mashima. XRF analyses of major and trace elements in silicate rocks calibrated with synthetic standard samples , 2016 .
[62] Anthony J. Klimasara,et al. LOGICAL STEPS IN THE AUTOMATED LACHANCE - TRAILL XRF MATRIX CORRECTION METHOD UTILIZING AN ELECTRONIC SPREADSHEET , 2000 .
[63] R. Gunst. Applied Regression Analysis , 1999, Technometrics.
[64] A. Klimasara. XRF ANALYSIS - THEORY, EXPERIMENT, AND REGRESSION , 1997 .
[65] R. Brereton. Chemometrics in analytical chemistry. A review , 1987 .
[66] S. Abbey,et al. FeR-1, FeR-2, FeR-3, and FeR-4: Four Canadian iron-formation samples prepared for use as reference materials , 1983 .
[67] R. Jain,et al. On the robustness of recursive outlier detection procedures to nonnormality , 1981 .
[68] Ram B. Jain,et al. Detecting outliers: power and some other considerations , 1981 .
[69] Sydney Abbey,et al. Reference materials ; rock samples SY-2, SY-3, MRG-1 , 1980 .
[70] R. Rousseau,et al. Theoritical alpha coefficients for the Claisse-Quintin relation for X-ray spectrochemical analysis , 1974 .
[71] Derek York,et al. Least squares fitting of a straight line with correlated errors , 1968 .