Polarization Orientation, Piezoelectricity, and Energy Harvesting Performance of Ferroelectric PVDF‐TrFE Nanotubes Synthesized by Nanoconfinement

1D nanostructures of soft ferroelectric materials exert promising potential in the fields of energy harvesting and flexible and printed nanoelectronics. Here, improved piezoelectric properties, energy-harvesting performance, lower coercive fields, and the polarization orientation of poly(vinylidene fluoride–trifluoroethylene) (PVDF-TrFE) nanotubes synthesized with nanoconfinement effect are reported. X-ray diffraction (XRD) patterns of the nanotubes show the peak corresponding to the planes of (110)/(200), which is a signature of ferroelectric beta phase formation. Piezoforce spectroscopy measurements on the free-standing horizontal nanotubes bundles reveal that the effective polarization direction is oriented at an inclination to the long axis of the nanotubes. The nanotubes exhibit a coercive field of 18.6 MV m−1 along the long axis and 40 MV m−1 (13.2 MV m−1 considering the air gap) in a direction perpendicular to the long axis, which is lower than the film counterpart of 50 MV m−1. The poled 200 nm nanotubes, with 40% reduction in poling field, give larger piezoelectric d33 coefficient values of 44 pm V−1, compared to poled films (≈20 pm V−1). The ferroelectric nanotubes deliver superior energy harvesting performance with an output voltage of ≈4.8 V and power of 2.2 μW cm−2, under a dynamic compression pressure of 0.075 MPa at 1 Hz.

[1]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[2]  S. H. Choy,et al.  Highly durable all-fiber nanogenerator for mechanical energy harvesting , 2013 .

[3]  Eunkyoung Kim,et al.  Fabrication of micropatterned ferroelectric gamma poly(vinylidene fluoride) film for non-volatile polymer memory , 2011 .

[4]  Hannes Bleuler,et al.  Study of polyvinylidene fluoride (PVDF) based bimorph actuators for laser scanning actuation at kHz frequency range , 2012 .

[5]  T. Bein,et al.  Confinement in oriented mesopores induces piezoelectric behavior of polymeric nanowires , 2012 .

[6]  Tushar Sharma,et al.  Patterning piezoelectric thin film PVDF–TrFE based pressure sensor for catheter application , 2012 .

[7]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[8]  Mari-Ann Einarsrud,et al.  One‐Dimensional Nanostructures of Ferroelectric Perovskites , 2011, Advanced materials.

[9]  K. Dalnoki-Veress,et al.  Homogeneous crystallization of poly(ethylene oxide) confined to droplets: the dependence of the crystal nucleation rate on length scale and temperature. , 2004, Physical review letters.

[10]  Nae-Eung Lee,et al.  Physically responsive field-effect transistors with giant electromechanical coupling induced by nanocomposite gate dielectrics. , 2011, ACS nano.

[11]  T. Russell,et al.  Confinement Effects on Crystallization and Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene) , 2010 .

[12]  Xiaojun Yan,et al.  Piezoelectric actuation of direct-write electrospun fibers , 2010 .

[13]  N. Lee,et al.  Highly sensitive stretchable transparent piezoelectric nanogenerators , 2013 .

[14]  Youn Jung Park,et al.  Control of thin ferroelectric polymer films for non-volatile memory applications , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[15]  Woo Y. Lee,et al.  Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications. , 2006, Small.

[16]  Szu-Hung Chen,et al.  Enhanced Piezoelectricity of Nanoimprinted Sub-20 nm Poly(vinylidene fluoride–trifluoroethylene) Copolymer Nanograss , 2012 .

[17]  B. Lotz,et al.  Self-nucleation and enhanced nucleation of polyvinylidene fluoride (α-phase) , 2001 .

[18]  Giancarlo Canavese,et al.  Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. , 2013, ACS applied materials & interfaces.

[19]  Youn Jung Park,et al.  Nonvolatile polymer memory with nanoconfinement of ferroelectric crystals. , 2011, Nano letters.

[20]  Stephen Jesse,et al.  Switching spectroscopy piezoresponse force microscopy of ferroelectric materials , 2006 .

[21]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[22]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[23]  T. Furukawa Ferroelectric properties of vinylidene fluoride copolymers , 1989 .

[24]  Paul M. Weaver,et al.  Measurement techniques for piezoelectric nanogenerators , 2013 .

[25]  N. Setter,et al.  Thermally induced cooperative molecular reorientation and nanoscale polarization switching behaviors of ultrathin poly(vinylidene fluoride-trifluoroethylene) films. , 2011, The journal of physical chemistry. B.

[26]  A. Jonas,et al.  Nanoscale control of polymer crystallization by nanoimprint lithography. , 2005, Nano letters.

[27]  M. Steinhart,et al.  Nanotubes à la carte: wetting of porous templates. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  M. Steinhart,et al.  Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes. , 2006, Physical review letters.

[29]  K. No,et al.  Fabrication of Vertically Well‐Aligned P(VDF‐TrFE) Nanorod Arrays , 2012, Advanced materials.

[30]  A. Gruverman,et al.  Orientational imaging in polar polymers by piezoresponse force microscopy , 2011 .