Cross rules and non-Abelian lattice equations for the discrete and confluent non-scalar ε-algorithms

In this paper, we give the cross rules of the discrete and confluent vector, topological and matrix e-algorithms. Then, from the rules of these confluent algorithms, we derive non-Abelian lattice equations, in particular some extensions of the Lotka–Volterra system, in the style of the equation related to the confluent form of the scalar e-algorithm.

[1]  A. Ramani,et al.  How to detect the integrability of discrete systems , 2009 .

[2]  Moody T. Chu,et al.  Linear algebra algorithms as dynamical systems , 2008, Acta Numerica.

[3]  Alfred Ramani,et al.  Integrable difference equations and numerical analysis algorithms , 1996 .

[4]  P. Wynn,et al.  Acceleration techniques for iterated vector and matrix problems : (mathematics of computation, _1_6(1962), nr 79, p 301-322) , 1962 .

[5]  P. Wynn,et al.  Confluent forms of certain non-linear algorithms , 1960 .

[6]  Claude Brezinski,et al.  Convergence acceleration during the 20th century , 2000 .

[7]  Claude Brezinski A brief introduction to integrable systems , 2007, Int. J. Comput. Sci. Math..

[8]  C. Brezinski,et al.  Extrapolation methods , 1992 .

[9]  B. Burrows,et al.  Lower bounds for quartic anharmonic and double‐well potentials , 1993 .

[10]  J. Nimmo,et al.  A NON-COMMUTATIVE SEMI-DISCRETE TODA EQUATION AND ITS QUASI-DETERMINANT SOLUTIONS , 2009, Glasgow Mathematical Journal.

[11]  P. Wynn,et al.  On a Device for Computing the e m (S n ) Transformation , 1956 .

[12]  B. Grammaticos,et al.  Integrable lattices and convergence acceleration algorithms , 1993 .

[13]  Forme confluente de l'ε-algorithme topologique , 1974 .

[14]  D. Shanks Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .

[15]  Claude Brezinski,et al.  Extrapolation Algorithms for Filtering Series of Functions, and Treating the Gibbs Phenomenon , 2004, Numerical Algorithms.

[16]  C. Brezinski Generalisations de la transformation de shanks, de la table de Pade et de l'ε-algorithme , 1975 .

[17]  Atsushi Nagai,et al.  The Toda molecule equation and the epsilon-algorithm , 1998, Math. Comput..

[18]  C. Brezinski Dynamical systems and sequence transformations , 2001 .

[19]  Zuo-nong Zhu,et al.  Multi-soliton, multi-positon, multi-negaton, and multi-periodic solutions of the coupled Volterra lattice equation , 2009, 0911.3458.

[20]  Atsushi Nagai,et al.  Discrete soliton equations and convergence acceleration algorithms , 1995, solv-int/9511001.