Writhe polynomial for virtual links

A weak chord index $Ind'$ is constructed for self crossing points of virtual links. Then a new writhe polynomial $W$ of virtual links is defined by using $Ind'$. $W$ is a generalization of writhe polynomial defined in [6]. Based on $W$, three invariants of virtual links are constructed. These invariants can be used to detect the non-trivialities of Kishino knot and flat Kishino knot.

[1]  Zhiyun Cheng,et al.  Some remarks on the chord index , 2018, 1811.09061.

[2]  K. Kaur,et al.  Two-variable polynomial invariants of virtual knots arising from flat virtual knot invariants , 2018, Journal of Knot Theory and Its Ramifications.

[3]  Y. Im,et al.  Polynomial invariants via odd parities for virtual link diagrams , 2017 .

[4]  Y. Im,et al.  A sequence of polynomial invariants for Gauss diagrams , 2017 .

[5]  Zhiyun Cheng The Chord Index, its Definitions, Applications, and Generalizations , 2016, Canadian Journal of Mathematics.

[6]  B. Mellor Alexander and writhe polynomials for virtual knots , 2016, 1601.07153.

[7]  Myeong-Ju Jeong A zero polynomial of virtual knots , 2016 .

[8]  Zhiyun Cheng A TRANSCENDENTAL FUNCTION INVARIANT OF VIRTUAL KNOTS , 2015, 1511.08459.

[9]  Yongju Bae,et al.  On Gauss diagrams of periodic virtual knots , 2015 .

[10]  Y. Im,et al.  An index definition of parity mappings of a virtual link diagram and Vassiliev invariants of degree one , 2014 .

[11]  Y. Im,et al.  THE PARITY WRITHE POLYNOMIALS FOR VIRTUAL KNOTS AND FLAT VIRTUAL KNOTS , 2013 .

[12]  Zhiyun Cheng,et al.  A polynomial invariant of virtual links , 2013, 1301.1755.

[13]  L. Kauffman An Affine Index Polynomial Invariant of Virtual Knots , 2012, 1211.1601.

[14]  V. Manturov,et al.  Virtual Knots: The State of the Art , 2012 .

[15]  H. Dye Vassiliev Invariants from Parity Mappings , 2012, 1203.2939.

[16]  Zhiyun Cheng A polynomial invariant of virtual knots , 2012, 1202.3850.

[17]  Louis H. Kauffman,et al.  INTRODUCTION TO VIRTUAL KNOT THEORY , 2011, 1101.0665.

[18]  M. Polyak Minimal generating sets of Reidemeister moves , 2009, 0908.3127.

[19]  L. Kauffman,et al.  Virtual Crossing Number and the Arrow Polynomial , 2008, 0810.3858.

[20]  V. Manturov Khovanov homology for virtual knots with arbitrary coefficients , 2007 .

[21]  Louis H. Kauffman,et al.  A self-linking invariant of virtual knots , 2004, math/0405049.

[22]  Susan G. Williams,et al.  POLYNOMIAL INVARIANTS OF VIRTUAL LINKS , 2003 .

[23]  G. Kuperberg What is a virtual link , 2002, math/0208039.

[24]  V. Manturov On Invariants of Virtual Links , 2002 .

[25]  M. Saito,et al.  STABLE EQUIVALENCE OF KNOTS ON SURFACES AND VIRTUAL KNOT COBORDISMS , 2000, math/0008118.

[26]  L. Kauffman Virtual Knot Theory , 1998, Eur. J. Comb..

[27]  T. V. H. Prathamesh Knot Theory , 2016, Arch. Formal Proofs.

[28]  S. Satoh,et al.  The writhes of a virtual knot , 2014 .