Statistical analysis of relative labeled mass spectrometry data from complex samples using ANOVA.

Statistical tools enable unified analysis of data from multiple global proteomic experiments, producing unbiased estimates of normalization terms despite the missing data problem inherent in these studies. The modeling approach, implementation, and useful visualization tools are demonstrated via a case study of complex biological samples assessed using the iTRAQ relative labeling protocol.

[1]  T. Therneau,et al.  A statistical model for iTRAQ data analysis. , 2008, Journal of proteome research.

[2]  Neil Swainston,et al.  Capture and analysis of quantitative proteomic data , 2007, Proteomics.

[3]  Terry M. Therneau,et al.  Regression analysis for comparing protein samples with 16O/18O stable-isotope labeled mass spectrometry , 2006, Bioinform..

[4]  Benno Schwikowski,et al.  Assessing Bias in Experiment Design for Large Scale Mass Spectrometry-based Quantitative Proteomics*S , 2007, Molecular & Cellular Proteomics.

[5]  F. Cross,et al.  Accurate quantitation of protein expression and site-specific phosphorylation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  X. Yao,et al.  Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. , 2001, Analytical chemistry.

[7]  Russell D. Wolfinger,et al.  The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster , 2001, Nature Genetics.

[8]  Hua Tang,et al.  Normalization Regarding Non-Random Missing Values in High-Throughput Mass Spectrometry Data , 2005, Pacific Symposium on Biocomputing.

[9]  R Fisher,et al.  Design of Experiments , 1936 .

[10]  J. Yates,et al.  A model for random sampling and estimation of relative protein abundance in shotgun proteomics. , 2004, Analytical chemistry.

[11]  H. Kwon,et al.  Proteomic analysis of microvesicles derived from human colorectal cancer cells. , 2007, Journal of proteome research.

[12]  T. Therneau,et al.  Experimental design and analysis of antibody microarrays: applying methods from cDNA arrays. , 2005, Cancer research.

[13]  Gary A. Churchill,et al.  Analysis of Variance for Gene Expression Microarray Data , 2000, J. Comput. Biol..

[14]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[15]  Terry M. Therneau,et al.  Faster cyclic loess: normalizing RNA arrays via linear models , 2004, Bioinform..

[16]  Rafael A. Irizarry,et al.  A Model-Based Background Adjustment for Oligonucleotide Expression Arrays , 2004 .

[17]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[18]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[19]  J. I The Design of Experiments , 1936, Nature.

[20]  Sean L Seymour,et al.  Discovering known and unanticipated protein modifications using MS/MS database searching. , 2005, Analytical chemistry.

[21]  Jae K. Lee,et al.  Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays , 2003, Bioinform..

[22]  Pierre R. Bushel,et al.  Assessing Gene Significance from cDNA Microarray Expression Data via Mixed Models , 2001, J. Comput. Biol..

[23]  Gilbert S Omenn,et al.  Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. , 2006, Journal of proteome research.

[24]  H. R. Bergen,et al.  A Method for Automatically Interpreting Mass Spectra of 18O-Labeled Isotopic Clusters*S , 2007, Molecular & Cellular Proteomics.

[25]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .