Ventral tegmental area GABA neurons and opiate motivation

[1]  Zhi-yuan Yu,et al.  Both NKCC1 and anion exchangers contribute to Cl− accumulation in postnatal forebrain neuronal progenitors , 2012, The European journal of neuroscience.

[2]  S. Moss,et al.  Neurosteroidogenesis Is Required for the Physiological Response to Stress: Role of Neurosteroid-Sensitive GABAA Receptors , 2011, The Journal of Neuroscience.

[3]  P. Veinante,et al.  Neuronal circuits underlying acute morphine action on dopamine neurons , 2011, Proceedings of the National Academy of Sciences.

[4]  Y. Yanagawa,et al.  Mefloquine effects on ventral tegmental area dopamine and GABA neuron inhibition: A physiologic role for connexin‐36 GAP junctions , 2011, Synapse.

[5]  J. G. Edwards,et al.  The role of connexin‐36 gap junctions in alcohol intoxication and consumption , 2011, Synapse.

[6]  Elyssa B. Margolis,et al.  Nucleus Accumbens Medium Spiny Neurons Target Non-Dopaminergic Neurons in the Ventral Tegmental Area , 2011, The Journal of Neuroscience.

[7]  S. Sesack,et al.  The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus , 2011, The Journal of comparative neurology.

[8]  S. Moss,et al.  NMDA receptor activity downregulates KCC2 resulting in depolarizing GABAA receptor mediated currents , 2011, Nature Neuroscience.

[9]  M. Pistis,et al.  Effects of Drugs of Abuse on Putative Rostromedial Tegmental Neurons, Inhibitory Afferents to Midbrain Dopamine Cells , 2011, Neuropsychopharmacology.

[10]  J. Kauer,et al.  Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area , 2010, The European journal of neuroscience.

[11]  Tero Viitanen,et al.  The K+–Cl− cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus , 2010, The Journal of physiology.

[12]  Kelly R. Tan,et al.  Neural bases for addictive properties of benzodiazepines , 2010, Nature.

[13]  Elyssa B. Margolis,et al.  Glutamatergic and Nonglutamatergic Neurons of the Ventral Tegmental Area Establish Local Synaptic Contacts with Dopaminergic and Nondopaminergic Neurons , 2010, The Journal of Neuroscience.

[14]  Natalia Omelchenko,et al.  Ultrastructural analysis of local collaterals of rat ventral tegmental area neurons: GABA phenotype and synapses onto dopamine and GABA cells , 2009, Synapse.

[15]  P. Kalivas The glutamate homeostasis hypothesis of addiction , 2009, Nature Reviews Neuroscience.

[16]  D. van der Kooy,et al.  Ventral Tegmental Area BDNF Induces an Opiate-Dependent–Like Reward State in Naïve Rats , 2009, Science.

[17]  Mark G. Baxter,et al.  The Rostromedial Tegmental Nucleus (RMTg), a GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses , 2009, Neuron.

[18]  D. van der Kooy,et al.  Tegmental pedunculopontine glutamate and GABA-B synapses mediate morphine reward. , 2009, Behavioral neuroscience.

[19]  M. Hirata,et al.  Early Changes in KCC2 Phosphorylation in Response to Neuronal Stress Result in Functional Downregulation , 2007, The Journal of Neuroscience.

[20]  Elyssa B. Margolis,et al.  The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? , 2006, The Journal of physiology.

[21]  S. Henriksen,et al.  Contingent and non-contingent effects of heroin on mu-opioid receptor-containing ventral tegmental area GABA neurons , 2006, Experimental Neurology.

[22]  S. Henriksen,et al.  Connexin‐36 gap junctions mediate electrical coupling between ventral tegmental area GABA neurons , 2006, Synapse.

[23]  Danielle L. Graham,et al.  Essential Role of BDNF in the Mesolimbic Dopamine Pathway in Social Defeat Stress , 2006, Science.

[24]  R. Palmiter,et al.  Morphine reward in dopamine-deficient mice , 2005, Nature.

[25]  S. Sesack,et al.  Laterodorsal tegmental projections to identified cell populations in the rat ventral tegmental area , 2005, The Journal of comparative neurology.

[26]  D. van der Kooy,et al.  GABAA receptors signal bidirectional reward transmission from the ventral tegmental area to the tegmental pedunculopontine nucleus as a function of opiate state , 2004, The European journal of neuroscience.

[27]  Kazuto Kobayashi,et al.  Identification of GABAA receptor subunit variants in midbrain dopaminergic neurons , 2004, Journal of Neurochemistry.

[28]  S. Henriksen,et al.  Opiate state controls bi-directional reward signaling via GABAA receptors in the ventral tegmental area , 2004, Nature Neuroscience.

[29]  T. Kaneko,et al.  Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67‐GFP knock‐in mouse , 2003, The Journal of comparative neurology.

[30]  Yves De Koninck,et al.  Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain , 2003, Nature.

[31]  J. Voipio,et al.  BDNF-induced TrkB activation down-regulates the K+–Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion , 2002, The Journal of cell biology.

[32]  Y. Ben-Ari Excitatory actions of gaba during development: the nature of the nurture , 2002, Nature Reviews Neuroscience.

[33]  S. Royer,et al.  Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. , 2001, Journal of neurophysiology.

[34]  V. Pickel,et al.  μ‐Opioid receptors in the ventral tegmental area are targeted to presynaptically and directly modulate mesocortical projection neurons , 2001, Synapse.

[35]  M. McCarthy,et al.  Excitatory versus inhibitory GABA as a divergence point in steroid-mediated sexual differentiation of the brain , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  D. Alkon,et al.  Pharmacological enhancement of synaptic efficacy, spatial learning, and memory through carbonic anhydrase activation in rats. , 2001, The Journal of pharmacology and experimental therapeutics.

[37]  G. Sperk,et al.  Distribution of the major γ‐aminobutyric acidA receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat , 2001, The Journal of comparative neurology.

[38]  K. Ballanyi,et al.  Disruption of KCC2 Reveals an Essential Role of K-Cl Cotransport Already in Early Synaptic Inhibition , 2001, Neuron.

[39]  J. A. Payne,et al.  The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation , 1999, Nature.

[40]  R. Wise,et al.  Effects of Pedunculopontine Tegmental Nucleus Lesions on Responding for Intravenous Heroin under Different Schedules of Reinforcement , 1998, The Journal of Neuroscience.

[41]  Yosef Yarom,et al.  GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity , 1997, Nature.

[42]  J. Williams,et al.  Increased Probability of GABA Release during Withdrawal from Morphine , 1997, The Journal of Neuroscience.

[43]  K. Staley,et al.  Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors , 1995, Science.

[44]  E. V. Bockstaele,et al.  GABA-containing neurons in the ventral tegmental area project to the nucleus accumbens in rat brain , 1995, Brain Research.

[45]  J. Paysan,et al.  Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  K. Kaila,et al.  Ionic basis of GABAA receptor channel function in the nervous system , 1994, Progress in Neurobiology.

[47]  K. Nader,et al.  The motivation produced by morphine and food is isomorphic: Approaches to specific motivational stimuli are learned , 1994, Psychobiology.

[48]  M. Olmstead,et al.  Effects of pedunculopontine tegmental nucleus lesions on morphine-induced conditioned place preference and analgesia in the formalin test , 1993, Neuroscience.

[49]  K. Berridge,et al.  The neural basis of drug craving: An incentive-sensitization theory of addiction , 1993, Brain Research Reviews.

[50]  J. Voipio,et al.  The role of bicarbonate in GABAA receptor‐mediated IPSPs of rat neocortical neurones. , 1993, The Journal of physiology.

[51]  P. Kalivas Neurotransmitter regulation of dopamine neurons in the ventral tegmental area , 1993, Brain Research Reviews.

[52]  C. Cunningham,et al.  Haloperidol does not alter expression of ethanol-induced conditioned place preference , 1992, Behavioural Brain Research.

[53]  S. Sesack,et al.  Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area , 1992, The Journal of comparative neurology.

[54]  R. North,et al.  Two types of neurone in the rat ventral tegmental area and their synaptic inputs. , 1992, The Journal of physiology.

[55]  D. van der Kooy,et al.  A single brain stem substrate mediates the motivational effects of both opiates and food in nondeprived rats but not in deprived rats. , 1992, Behavioral neuroscience.

[56]  R. North,et al.  Opioids excite dopamine neurons by hyperpolarization of local interneurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  Y. Ben-Ari,et al.  GABA: an excitatory transmitter in early postnatal life , 1991, Trends in Neurosciences.

[58]  R. Wise Opiate reward: Sites and substrates , 1989, Neuroscience & Biobehavioral Reviews.

[59]  D. Prince,et al.  Outward chloride/cation co-transport in mammalian cortical neurons , 1988, Neuroscience Letters.

[60]  Stanley J. Watson,et al.  The rat brain in stereotaxic coordinates (2nd edn) by George Paxinos and Charles Watson, Academic Press, 1986. £40.00/$80.00 (264 pages) ISBN 012 547 6213 , 1987, Trends in Neurosciences.

[61]  N. Goeders,et al.  Self-administration of methionine enkephalin into the nucleus accumbens , 1984, Pharmacology Biochemistry and Behavior.

[62]  D. Kooy,et al.  Drug reinforcement studied by the use of place conditioning in rat , 1982, Brain Research.

[63]  L. Swanson,et al.  The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat , 1982, Brain Research Bulletin.

[64]  M. Olds Reinforcing effects of morphine in the nucleus accumbens , 1982, Brain Research.

[65]  R. Wise Neuroleptics and operant behavior: The anhedonia hypothesis , 1982, Behavioral and Brain Sciences.

[66]  J. Deniau,et al.  Electrophysiological evidence for non-dopaminergic mesocortical and mesolimbic neurons in the rat , 1980, Brain Research.

[67]  F. Bloom,et al.  Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats , 2004, Psychopharmacology.

[68]  P. Kalivas,et al.  Autoradiographic localization of γ-aminobutyric acidA receptors within the ventral tegmental area , 2004, Neurochemical Research.

[69]  D. Kooy,et al.  Blockade of mesolimbic dopamine transmission dramatically increases sensitivity to the rewarding effects of nicotine in the ventral tegmental area , 2003, Molecular Psychiatry.

[70]  V. Pickel,et al.  Plasmalemmal mu-opioid receptor distribution mainly in nondopaminergic neurons in the rat ventral tegmental area. , 2001, Synapse.

[71]  P. Kalivas,et al.  Autoradiographic localization of gamma-aminobutyric acidA receptors within the ventral tegmental area. , 1992, Neurochemical Research.

[72]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[73]  B. Pitt Psychopharmacology , 1968, Mental Health.