DIFFUSE ATOMIC AND MOLECULAR GAS IN THE INTERSTELLAR MEDIUM OF M82 TOWARD SN 2014J

We present a comprehensive analysis of interstellar absorption lines seen in moderately high resolution, high signal-to-noise ratio optical spectra of SN 2014J in M82. Our observations were acquired over the course of six nights, covering the period from ∼6 days before to ∼30 days after the supernova reached its maximum B-band brightness. We examine complex absorption from Na i, Ca ii, K i, Ca i, CH+, CH, and CN, arising primarily from diffuse gas in the interstellar medium (ISM) of M82. We detect Li i absorption over a range in velocity consistent with that exhibited by the strongest Na i and K i components associated with M82; this is the first detection of interstellar Li in a galaxy outside of the Local Group. There are no significant temporal variations in the absorption-line profiles over the 37 days sampled by our observations. The relative abundances of the various interstellar species detected reveal that the ISM of M82 probed by SN 2014J consists of a mixture of diffuse atomic and molecular clouds characterized by a wide range of physical/environmental conditions. Decreasing N(Na i)/N(Ca ii) ratios and increasing N(Ca i)/N(K i) ratios with increasing velocity are indicative of reduced depletion in the higher-velocity material. Significant component-to-component scatter in the N(Na i)/N(Ca ii) and N(Ca i)/N(Ca ii) ratios may be due to variations in the local ionization conditions. An apparent anti-correlation between the N(CH+)/N(CH) and N(Ca i)/N(Ca ii) ratios can be understood in terms of an opposite dependence on gas density and radiation field strength, while the overall high CH+ abundance may be indicative of enhanced turbulence in the ISM of M82. The Li abundance also seems to be enhanced in M82, which supports the conclusions of recent gamma-ray emission studies that the cosmic-ray acceleration processes are greatly enhanced in this starburst galaxy.

[1]  E. Falgarone,et al.  Chemical probes of turbulence in the diffuse medium: the TDR model , 2014, 1408.3716.

[2]  Z. Paragi,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM AND THE ENVIRONS OF SN 2014J FROM DEEP RADIO OBSERVATIONS , 2014, 1405.4702.

[3]  J. Bochanski,et al.  EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82 , 2014, 1405.3970.

[4]  W. Hillebrandt,et al.  Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust , 2014, 1405.3677.

[5]  R. Kirshner,et al.  NO X-RAYS FROM THE VERY NEARBY TYPE Ia SN 2014J: CONSTRAINTS ON ITS ENVIRONMENT , 2014, 1405.1488.

[6]  P. E. Nugent,et al.  THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE , 2014, 1404.2595.

[7]  D. York,et al.  DIFFUSE INTERSTELLAR BANDS VERSUS KNOWN ATOMIC AND MOLECULAR SPECIES IN THE INTERSTELLAR MEDIUM OF M82 TOWARD SN 2014J , 2014, 1404.2639.

[8]  S. B. Cenko,et al.  THE RISE OF SN 2014J IN THE NEARBY GALAXY M82 , 2014 .

[9]  N. Cox,et al.  Dense molecular clouds in the SN 2008fp host galaxy , 2014, 1403.4386.

[10]  E. Ofek,et al.  The rise of SN2014J in the nearby galaxy M82 , 2014, 1402.0849.

[11]  Wei Zheng,et al.  ESTIMATING THE FIRST-LIGHT TIME OF THE TYPE IA SUPERNOVA 2014J IN M82 , 2014, 1401.7968.

[12]  R. Kotak Optical spectroscopy of SN2014J , 2014 .

[13]  M. Kasliwal,et al.  Classification of Supernova in M82 as a young, reddened Type Ia Supernova , 2014 .

[14]  H. Winckel,et al.  High-resolution spectroscopy of SN2014J in M82 , 2014 .

[15]  Wendy L. Freedman,et al.  ON THE SOURCE OF THE DUST EXTINCTION IN TYPE Ia SUPERNOVAE AND THE DISCOVERY OF ANOMALOUSLY STRONG Na i ABSORPTION , 2013, 1311.0147.

[16]  D. York,et al.  ANOMALOUS DIFFUSE INTERSTELLAR BANDS IN THE SPECTRUM OF HERSCHEL 36. I. OBSERVATIONS OF ROTATIONALLY EXCITED CH AND CH+ ABSORPTION AND STRONG, EXTENDED REDWARD WINGS ON SEVERAL DIBs , 2013, 1305.3003.

[17]  G. Vaucouleurs,et al.  Third Reference Catalogue of Bright Galaxies , 2012 .

[18]  B. Fields,et al.  Observation of interstellar lithium in the low-metallicity Small Magellanic Cloud , 2012, Nature.

[19]  N. Prantzos Production and evolution of Li, Be, and B isotopes in the Galaxy , 2012, 1203.5662.

[20]  D. York,et al.  STUDIES OF DIFFUSE INTERSTELLAR BANDS V. PAIRWISE CORRELATIONS OF EIGHT STRONG DIBs AND NEUTRAL HYDROGEN, MOLECULAR HYDROGEN, AND COLOR EXCESS , 2010, 1011.2951.

[21]  D. Branch,et al.  Studying the small scale ISM structure with supernovae , 2010, 1003.0778.

[22]  et al,et al.  DETECTION OF GAMMA-RAY EMISSION FROM THE STARBURST GALAXIES M82 AND NGC 253 WITH THE LARGE AREA TELESCOPE ON FERMI , 2009, 0911.5327.

[23]  T. Weekes,et al.  A connection between star formation activity and cosmic rays in the starburst galaxy M82 , 2009, Nature.

[24]  D. York,et al.  STUDIES OF THE DIFFUSE INTERSTELLAR BANDS. III. HD 183143 , 2009, 0910.2983.

[25]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[26]  R. P. Butler,et al.  VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA, , 2009, 0907.1083.

[27]  S. Federman,et al.  INTERSTELLAR CN AND CH+ IN DIFFUSE MOLECULAR CLOUDS: 12C/13C RATIOS AND CN EXCITATION , 2009, 1012.1296.

[28]  L. Rizzi,et al.  THE EXTRAGALACTIC DISTANCE DATABASE: COLOR–MAGNITUDE DIAGRAMS , 2009, 0902.3675.

[29]  E. Falgarone,et al.  Models of turbulent dissipation regions in the diffuse interstellar medium , 2009, 0901.3712.

[30]  N. Abel,et al.  Ultraviolet Survey of CO and H2 in Diffuse Molecular Clouds: The Reflection of Two Photochemistry Regimes in Abundance Relationships , 2008, 0807.0940.

[31]  N. Cox,et al.  Interstellar atoms, molecules and diffuse bands toward SN2006X in M 100 , 2008, 0805.3028.

[32]  L. Girardi,et al.  THE ACS NEARBY GALAXY SURVEY TREASURY , 2007, 0905.3737.

[33]  P. Chandra,et al.  Detection of Circumstellar Material in a Normal Type Ia Supernova , 2007, Science.

[34]  K. Pan,et al.  The Nature of Interstellar Gas toward the Pleiades Revealed in Absorption Lines , 2006, astro-ph/0606644.

[35]  U. Toledo,et al.  VLT UVES Observations of Interstellar Molecules and Diffuse Bands in the Magellanic Clouds , 2006, astro-ph/0603332.

[36]  D. York,et al.  Supernova 2006X in NGC 4321 , 2006 .

[37]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[38]  R. Maiolino,et al.  Stellar and Gaseous Abundances in M82 , 2004, astro-ph/0401361.

[39]  Bangalore,et al.  Lithium abundances of the local thin disc stars , 2004, astro-ph/0401259.

[40]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[41]  Constance M. Rockosi,et al.  ARCES: an echelle spectrograph for the Astrophysical Research Consortium (ARC) 3.5m telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[42]  D. York,et al.  Some Diffuse Interstellar Bands Related to Interstellar C2 Molecules , 2003 .

[43]  S. Federman,et al.  Nonthermal Chemistry in Diffuse Clouds with Low Molecular Abundances , 2003, astro-ph/0302133.

[44]  D. Morton,et al.  High-Resolution Observations of Interstellar Ca I Absorption—Implications for Depletions and Electron Densities in Diffuse Clouds , 2003, astro-ph/0302089.

[45]  S. Federman,et al.  To appear in the Astrophysical Journal. An Ultra-High-Resolution Survey of the Interstellar 7 Li-to- 6 Li Isotope Ratio in the Solar Neighborhood , 2002 .

[46]  K. Cunha,et al.  Cloud Structure and Physical Conditions in Star-forming Regions from Optical Observations. II. Analysis , 2003, astro-ph/0507491.

[47]  F. Walter,et al.  Molecular Gas in M82: Resolving the Outflow and Streamers , 2002, astro-ph/0210602.

[48]  F. Walter,et al.  Discovery of Molecular Gas in the Outflow and Tidal Arms around M82 , 2001, astro-ph/0110283.

[49]  D. York,et al.  The Diffuse Interstellar Clouds toward 23 Orionis , 1999, astro-ph/9905234.

[50]  M. Cassé,et al.  Galactic Cosmic Rays and the Evolution of Light Elements , 1998 .

[51]  M. Samland Modeling the Evolution of Disk Galaxies. II. Yields of Massive Stars , 1998 .

[52]  D. Welty,et al.  The Amount of CH Produced during CH+ Synthesis in Interstellar Clouds , 1997 .

[53]  Frank J. Kerr,et al.  Atlas of Galactic Neutral Hydrogen , 1997 .

[54]  R. Ramaty,et al.  Light Elements and Cosmic Rays in the Early Galaxy , 1996, astro-ph/9610255.

[55]  D. Welty,et al.  A High-Resolution Survey of Interstellar K I Absorption , 1996 .

[56]  G. Steigman Cosmic lithium: Going up or coming down? , 1995, astro-ph/9504048.

[57]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[58]  K. Roth,et al.  Cyanogen Excitation in Diffuse Interstellar Clouds , 1995 .

[59]  P. Ho,et al.  A high-resolution image of atomic hydrogen in the M81 group of galaxies , 1994, Nature.

[60]  V. Smith,et al.  Chemical transitions for interstellar C2 and CN in cloud envelopes , 1994 .

[61]  K. Roth,et al.  Interstellar and Intergalactic Magnesium and Sodium Absorption toward SN 1993J , 1994 .

[62]  P. Ho,et al.  H I streamers around M82 - Tidally disrupted outer gas disk , 1993 .

[63]  E. Palazzi,et al.  CN rotational excitation , 1992 .

[64]  B. Savage,et al.  Observations of Highly Ionized Gas in the Galactic Halo , 1992 .

[65]  R. White Interstellar lithium: differential depletion in diffuse clouds , 1986 .

[66]  J. Blades,et al.  Interstellar absorption lines in the directions of extragalactic objects – II. Analysis of 25 sight lines , 1986 .

[67]  L. Mundy,et al.  Molecular gas at high galactic latitudes , 1985 .

[68]  M. Barlow The destruction and growth of dust grains in interstellar space - III. Surface recombination, heavy element depletion and mantle growth , 1978 .

[69]  D. York,et al.  Abundance variations in high-velocity interstellar gas , 1977 .

[70]  M. Jura Calcium abundance variations in diffuse interstellar clouds , 1976 .

[71]  J. Silk,et al.  On the velocity dependence of the interstellar Na I/Ca II ratio. , 1974 .

[72]  D. York,et al.  Spectrophotometric results from the Copernicus satellite. V - Abundances of molecules in interstellar clouds. , 1973 .

[73]  L. Spitzer,et al.  A Comparison of the Components in Interstellar Sodium and Calcium. , 1952 .