Introducing DDEC6 atomic population analysis: part 1. Charge partitioning theory and methodology

Net atomic charges (NACs) are widely used in all chemical sciences to concisely summarize key information about the partitioning of electrons among atoms in materials. The objective of this article is to develop an atomic population analysis method that is suitable to be used as a default method in quantum chemistry programs irrespective of the kind of basis sets employed. To address this challenge, we introduce a new atoms-in-materials method with the following nine properties: (1) exactly one electron distribution is assigned to each atom, (2) core electrons are assigned to the correct host atom, (3) NACs are formally independent of the basis set type because they are functionals of the total electron distribution, (4) the assigned atomic electron distributions give an efficiently converging polyatomic multipole expansion, (5) the assigned NACs usually follow Pauling scale electronegativity trends, (6) NACs for a particular element have good transferability among different conformations that are equivalently bonded, (7) the assigned NACs are chemically consistent with the assigned atomic spin moments, (8) the method has predictably rapid and robust convergence to a unique solution, and (9) the computational cost of charge partitioning scales linearly with increasing system size. We study numerous materials as examples: (a) a series of endohedral C60 complexes, (b) high-pressure compressed sodium chloride crystals with unusual stoichiometries, (c) metal–organic frameworks, (d) large and small molecules, (e) organometallic complexes, (f) various solids, and (g) solid surfaces. Due to non-nuclear attractors, Bader's quantum chemical topology could not assign NACs for some of these materials. We show for the first time that the Iterative Hirshfeld and DDEC3 methods do not always converge to a unique solution independent of the initial guess, and this sometimes causes those methods to assign dramatically different NACs on symmetry-equivalent atoms. By using a fixed number of charge partitioning steps with well-defined reference ion charges, the DDEC6 method avoids this problem by always converging to a unique solution. These characteristics make the DDEC6 method ideally suited for use as a default charge assignment method in quantum chemistry programs.

[1]  C. Van Alsenoy,et al.  An Extension of the Hirshfeld Method to Open Shell Systems Using Fractional Occupations. , 2011, Journal of chemical theory and computation.

[2]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[3]  Peter Politzer,et al.  The fundamental nature and role of the electrostatic potential in atoms and molecules , 2002 .

[4]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[5]  Chongli Zhong,et al.  Development of computational methodologies for metal-organic frameworks and their application in gas separations. , 2013, Chemical reviews.

[6]  Louis P. Lee,et al.  Expanding the Scope of Density Derived Electrostatic and Chemical Charge Partitioning to Thousands of Atoms. , 2014, Journal of chemical theory and computation.

[7]  E. Stevens,et al.  Quantitative comparison of theoretical calculations with the experimentally determined electron density distribution of formamide , 1978 .

[8]  A. Otero-de-la-Roza,et al.  Density-functional description of electrides. , 2014, Physical chemistry chemical physics : PCCP.

[9]  P. Politzer,et al.  Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. , 1985, Environmental health perspectives.

[10]  T. Darden,et al.  Simple Formulas for Improved Point-Charge Electrostatics in Classical Force Fields and Hybrid Quantum Mechanical/Molecular Mechanical Embedding. , 2008, International journal of quantum chemistry.

[11]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[12]  L. E. Chirlian,et al.  Atomic charges derived from electrostatic potentials: A detailed study , 1987 .

[13]  Tom K Woo,et al.  Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional. , 2009, Journal of chemical theory and computation.

[14]  Artem R. Oganov,et al.  Unexpected Stable Stoichiometries of Sodium Chlorides , 2012, Science.

[15]  R. Wheatley,et al.  Redefining the atom: atomic charge densities produced by an iterative stockholder approach. , 2008, Chemical communications.

[16]  J. R. Schmidt,et al.  Generalization of Natural Bond Orbital Analysis to Periodic Systems: Applications to Solids and Surfaces via Plane-Wave Density Functional Theory. , 2012, Journal of chemical theory and computation.

[17]  R. Ruoff,et al.  Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry , 1993 .

[18]  Donald G Truhlar,et al.  Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases. , 2012, Journal of chemical theory and computation.

[19]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. IV. THE ENERGY OF SINGLE BONDS AND THE RELATIVE ELECTRONEGATIVITY OF ATOMS , 1932 .

[20]  Darrin M York,et al.  Contracted auxiliary Gaussian basis integral and derivative evaluation. , 2008, The Journal of chemical physics.

[21]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[22]  Lalith E. Perera,et al.  HPAM: Hirshfeld partitioned atomic multipoles , 2012, Comput. Phys. Commun..

[23]  T. Uruga,et al.  Electronic structure of Eu@C60 studied by XANES and UV–VIS absorption spectra , 2000 .

[24]  Mark A. Spackman,et al.  The use of the promolecular charge density to approximate the penetration contribution to intermolecular electrostatic energies , 2006 .

[25]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[26]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[27]  Todd A. Keith,et al.  Properties of atoms in molecules: additivity and transferability of group polarizabilities , 1992 .

[28]  Toon Verstraelen,et al.  Assessment of Atomic Charge Models for Gas-Phase Computations on Polypeptides. , 2012, Journal of chemical theory and computation.

[29]  Paul L. A. Popelier,et al.  Atomic partitioning of molecular electrostatic potentials , 2000 .

[30]  R. Smalley,et al.  UPS of Buckminsterfullerene and other large clusters of carbon , 1987 .

[31]  R. Bader,et al.  Molecular fragments or chemical bonds , 1975 .

[32]  K. Tiels,et al.  Uniqueness and basis set dependence of iterative Hirshfeld charges , 2007 .

[33]  K. Reichmann,et al.  C60La: a deflated soccer ball? , 1986, Journal of the American Chemical Society.

[34]  Gerald Knizia,et al.  Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.

[35]  Jerzy Cioslowski,et al.  A new population analysis based on atomic polar tensors , 1989 .

[36]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[37]  François-Xavier Coudert,et al.  Responsive Metal–Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends , 2015 .

[38]  Paul W Ayers,et al.  What is an atom in a molecule? , 2005, The journal of physical chemistry. A.

[39]  R. MacKinnon,et al.  Principles of Selective Ion Transport in Channels and Pumps , 2005, Science.

[40]  Chérif F Matta,et al.  An experimentalist's reply to "What is an atom in a molecule?". , 2006, The journal of physical chemistry. A.

[41]  M. Nascimento,et al.  Nature of the chemical bond and origin of the inverted dipole moment in boron fluoride: a generalized valence bond approach. , 2015, The journal of physical chemistry. A.

[42]  R. Smalley,et al.  The UV absorption spectrum of C60 (buckminsterfullerene): A narrow band at 3860 Å , 1987 .

[43]  B. Kirchner,et al.  Voronoi dipole moments for the simulation of bulk phase vibrational spectra. , 2015, Physical chemistry chemical physics : PCCP.

[44]  G. B. Suffritti,et al.  Partial Charges in Periodic Systems: Improving Electrostatic Potential (ESP) Fitting via Total Dipole Fluctuations and Multiframe Approaches. , 2015, Journal of chemical theory and computation.

[45]  W. Meerts,et al.  Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy , 1977 .

[46]  J L Finney,et al.  Calculation of protein volumes: an alternative to the Voronoi procedure. , 1982, Journal of molecular biology.

[47]  R. Parr,et al.  Information theory, atoms in molecules, and molecular similarity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[48]  K. Nakamoto,et al.  Electronic structures and spectral properties of endohedral fullerenes , 2005 .

[49]  F. Weinhold,et al.  Natural population analysis , 1985 .

[50]  D. Sholl,et al.  Methods for Computing Accurate Atomic Spin Moments for Collinear and Noncollinear Magnetism in Periodic and Nonperiodic Materials. , 2011, Journal of chemical theory and computation.

[51]  Alexander I Boldyrev,et al.  Solid state adaptive natural density partitioning: a tool for deciphering multi-center bonding in periodic systems. , 2013, Physical chemistry chemical physics : PCCP.

[52]  Alexander I Boldyrev,et al.  Developing paradigms of chemical bonding: adaptive natural density partitioning. , 2008, Physical chemistry chemical physics : PCCP.

[53]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[54]  C. Castiglioni,et al.  Atomic charges from IR intensity parameters: theory, implementation and application , 2012, Theoretical Chemistry Accounts.

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  Kenneth B. Wiberg,et al.  Comparison of atomic charges derived via different procedures , 1993, J. Comput. Chem..

[57]  T. Janowski Near Equivalence of Intrinsic Atomic Orbitals and Quasiatomic Orbitals. , 2014, Journal of chemical theory and computation.

[58]  Mark S. Gordon,et al.  An effective fragment method for modeling solvent effects in quantum mechanical calculations , 1996 .

[59]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[60]  Ernest R. Davidson,et al.  A test of the Hirshfeld definition of atomic charges and moments , 1992 .

[61]  X. Gonze,et al.  Dynamical atomic charges: The case of ABO(3) compounds , 1998 .

[62]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[63]  Patrick Bultinck,et al.  Electrostatic Potentials from Self-Consistent Hirshfeld Atomic Charges. , 2009, Journal of chemical theory and computation.

[64]  D. Vanderbilt,et al.  Giant LO-TO splittings in perovskite ferroelectrics. , 1994, Physical review letters.

[65]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[66]  A. Rosén,et al.  Calculations of the ionization thresholds and electron affinities of the neutral, positively and negatively charged C60—‘‘follene‐60’’ , 1989 .

[67]  Chris-Kriton Skylaris,et al.  Natural bond orbital analysis in the ONETEP code: Applications to large protein systems , 2013, J. Comput. Chem..

[68]  K. Dinse,et al.  Pulse electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) investigation of N@C 60 in polycrystalline C 60 , 1999 .

[69]  P. Ayers,et al.  The conformational sensitivity of iterative stockholder partitioning schemes , 2012 .

[70]  J. Meister,et al.  PRINCIPAL COMPONENTS OF IONICITY , 1994 .

[71]  F. Matthias Bickelhaupt,et al.  Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis , 2004, J. Comput. Chem..

[72]  Anthony J Stone,et al.  Distributed Multipole Analysis:  Stability for Large Basis Sets. , 2005, Journal of chemical theory and computation.

[73]  Laurence S. Rothman,et al.  Dipole moment of water from Stark measurements of H2O, HDO, and D2O , 1973 .

[74]  Richard F. W. Bader,et al.  Bonded and nonbonded charge concentrations and their relation to molecular geometry and reactivity , 1984 .

[75]  R. Bader,et al.  On the presence of non-nuclear attractors in the charge distributions of Li and Na clusters , 1987 .

[76]  D. L. Cooper,et al.  Comparison of the Hirshfeld-I and iterated stockholder atoms in molecules schemes. , 2009, Physical chemistry chemical physics : PCCP.

[77]  Jean-Philip Piquemal,et al.  Gaussian Multipole Model (GMM). , 2010, Journal of chemical theory and computation.

[78]  Patrick Bultinck,et al.  Reply to ‘comment on “extending Hirshfeld‐I to bulk and periodic materials”’ , 2013, J. Comput. Chem..

[79]  Louis P. Lee,et al.  Polarized Protein-Specific Charges from Atoms-in-Molecule Electron Density Partitioning , 2013, Journal of chemical theory and computation.

[80]  R. Wheatley,et al.  Atomic charge densities generated using an iterative stockholder procedure. , 2009, The Journal of chemical physics.

[81]  S. Okada,et al.  Density functional study on geometry and electronic structure of Eu@C60 , 2000 .

[82]  R. Bader,et al.  Everyman's derivation of the theory of atoms in molecules. , 2007, The journal of physical chemistry. A.

[83]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data , 2000 .

[84]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[85]  David S Sholl,et al.  Improved Atoms-in-Molecule Charge Partitioning Functional for Simultaneously Reproducing the Electrostatic Potential and Chemical States in Periodic and Nonperiodic Materials. , 2012, Journal of chemical theory and computation.

[86]  Patrick Bultinck,et al.  Extending Hirshfeld‐I to bulk and periodic materials , 2013, J. Comput. Chem..

[87]  A. Shusterman,et al.  Teaching Chemistry with Electron Density Models. 2. Can Atomic Charges Adequately Explain Electrostatic Potential Maps? , 2001 .

[88]  De-Li Chen,et al.  Atomic charges derived from electrostatic potentials for molecular and periodic systems. , 2010, The journal of physical chemistry. A.

[89]  Patrick Bultinck,et al.  Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.

[90]  R. A. Jockusch,et al.  Is arginine a zwitterion in the gas phase? , 1997, Journal of the American Chemical Society.

[91]  D. Sholl,et al.  Accurate Treatment of Electrostatics during Molecular Adsorption in Nanoporous Crystals without Assigning Point Charges to Framework Atoms , 2011 .

[92]  P. Coppens,et al.  Combination of the exact potential and multipole methods (EP/MM) for evaluation of intermolecular electrostatic interaction energies with pseudoatom representation of molecular electron densities , 2004 .

[93]  Bernard R. Brooks,et al.  Optimization of quantum mechanical molecular mechanical partitioning schemes: Gaussian delocalization of molecular mechanical charges and the double link atom method , 2002 .

[94]  Richard J. Wheatley,et al.  Gaussian multipole functions for describing molecular charge distributions , 1993 .

[95]  A. Oganov,et al.  Alkali subhalides: high-pressure stability and interplay between metallic and ionic bonds. , 2016, Physical chemistry chemical physics : PCCP.

[96]  Shaohong L Li,et al.  Modeling the Partial Atomic Charges in Inorganometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes. , 2014, Journal of chemical theory and computation.

[97]  T Verstraelen,et al.  Hirshfeld-E Partitioning: AIM Charges with an Improved Trade-off between Robustness and Accurate Electrostatics. , 2013, Journal of chemical theory and computation.

[98]  Y. S. Li,et al.  Ionicity of the MC60 bond in M@C60 endohedral complexes , 1995 .

[99]  T. Manz,et al.  Introducing DDEC6 atomic population analysis: part 2. Computed results for a wide range of periodic and nonperiodic materials , 2016 .

[100]  E. Davidson,et al.  Löwdin population analysis with and without rotational invariance , 2006 .

[101]  T. Kerdcharoen,et al.  CHARGE TRANSFER, POLARIZABILITY AND STABILITY OF LI-C60 COMPLEXES , 1998 .

[102]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[103]  Stephen J. Skinner,et al.  Oxygen ion conductors , 2003 .

[104]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[105]  Mark S. Gordon,et al.  Evaluation of Charge Penetration Between Distributed Multipolar Expansions , 2000 .

[106]  Jacopo Tomasi,et al.  Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials , 1978 .

[107]  P. Mori-Sánchez,et al.  Non-nuclear maxima of the electron density on alkaline metals , 2003 .

[108]  David S Sholl,et al.  Chemically Meaningful Atomic Charges That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materials. , 2010, Journal of chemical theory and computation.

[109]  A. V. Krisilov,et al.  The role of the encapsulated atom in the vibrational spectrа of La@C60–Lu@C60 lanthanide endofullerenes , 2015 .

[110]  Keith E. Laidig,et al.  General expression for the spatial partitioning of the moments and multipole moments of molecular charge distributions , 1993 .

[111]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[112]  Paul W. Ayers,et al.  A self‐consistent Hirshfeld method for the atom in the molecule based on minimization of information loss , 2011, J. Comput. Chem..

[113]  P. Coppens,et al.  The electron distribution in superconducting alloys: I. Analysis of V3Si at room temperature , 1976 .

[114]  Donald G Truhlar,et al.  Including Charge Penetration Effects in Molecular Modeling. , 2010, Journal of chemical theory and computation.

[115]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[116]  A. Kuki,et al.  Partial charges by multipole constraint. Application to the amino acids , 1990 .