Alternative mesh optimality criteria for h-adaptive finite element method

Adaptive strategies are a necessary tool to make finite element analysis applicable to engineering practice. In this paper, attention is restricted to mesh adaptivity. Traditionally, the most common mesh adaptive strategies for linear problems are used to attain a prescribed accuracy. This goal is best met with an h-adaptive scheme in combination with an error estimator. In this paper we propose the use of alternative mesh optimality criteria with an h-adaptive procedure for 2D elastic problems. The alternative mesh optimality criteria allow us to attain maximum of accuracy with a prescribed number of elements or a prescribed memory size or a prescribed cpu time. These adaptive strategies are based on a technique of error in constitutive relation and adapted techniques of construction of admissible fields (the process could be used with other error estimators) and an efficient adaptive technique which automatically takes account the steep gradient areas. Some examples show the efficiency of the method.

[1]  Javier Oliver,et al.  CRITERIA TO ACHIEVE NEARLY OPTIMAL MESHES IN THEh-ADAPTIVE FINITE ELEMENT METHOD , 1996 .

[2]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[3]  T. Belytschko,et al.  Computational Methods for Transient Analysis , 1985 .

[4]  Pierre Ladevèze,et al.  ERROR ESTIMATION AND MESH OPTIMIZATION FOR CLASSICAL FINITE ELEMENTS , 1991 .

[5]  O. C. Zienkiewicz,et al.  Adaptive techniques in the finite element method , 1988 .

[6]  Gabriel Bugeda,et al.  A general methodology for structural shape optimization problems using automatic adaptive remeshing , 1993 .

[7]  Pierre Ladevèze,et al.  An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity , 1995 .

[8]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[9]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[10]  J. W. Bull,et al.  Theoretical formulations for adaptive finite element computations , 1995 .

[11]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[12]  O. C. Zienkiewicz,et al.  New Advances in Computational Structural Mechanics: Proceedings of the European Conference on New Advances in Computational Structural Mechanics, Giens, France, 2-5 April 1991 , 1992 .

[13]  Bijan Boroomand,et al.  An improved REP recovery and the effectivity robustness test , 1997 .

[14]  P. Ladevèze,et al.  ERROR ESTIMATION AND ADAPTIVITY IN ELASTOPLASTICITY , 1996 .

[15]  Pierre Ladevèze,et al.  Mesh optimization for problems with steep gradients , 1994 .

[16]  J. Z. Zhu,et al.  Effective and practical h–p‐version adaptive analysis procedures for the finite element method , 1989 .

[17]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[18]  T. Strouboulis,et al.  Recent experiences with error estimation and adaptivity. Part I: Review of error estimators for scalar elliptic problems , 1992 .

[19]  Long-yuan Li,et al.  Adaptive Finite Element Methods: A Review , 1997 .

[20]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[21]  O. C. Zienkiewicz,et al.  Error estimates and adaptive refinement for plate bending problems , 1989 .

[22]  Josep Sarrate,et al.  Adaptive finite element strategies based on error assessment , 1999 .

[23]  A. Huerta,et al.  A unified approach to remeshing strategies for finite element h-adaptivity , 1999 .

[24]  Peter Bettess,et al.  Notes on mesh optimal criteria in adaptive finite element computations , 1995 .

[25]  J. Hyvärinen,et al.  An Arbitrary Lagrangian-Eulerian finite element method , 1998 .

[26]  Manolis Papadrakakis,et al.  Advances in post and preprocessing for finite element technology , 1994 .

[27]  J.-P. Pelle,et al.  Control of analyses with isoparametric elements in both 2‐D and 3‐D , 1999 .

[28]  Gabriel Bugeda,et al.  A STUDY OF MESH OPTIMALITY CRITERIA IN ADAPTIVE FINITE ELEMENT ANALYSIS , 1993 .

[29]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .