Indirect cycle time quantile estimation using the Cornish–Fisher expansion

This paper proposes a technique for estimating steady-state quantiles from discrete-event simulation models, with particular attention paid to cycle time quantiles of manufacturing systems. The technique is based on the Cornish–Fisher expansion, justified through an extensive empirical study, and is supported with mathematical analysis. It is shown that the technique provides precise and accurate estimates for the most commonly estimated quantiles with minimal data storage and low computational requirements.

[1]  Sean P. Meyn,et al.  Stability and convergence of moments for multiclass queueing networks via fluid limit models , 1995, IEEE Trans. Autom. Control..

[2]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[3]  Lai K. Chan,et al.  Skewness correction X̄ and R charts for skewed distributions , 2003 .

[4]  W. David Kelton,et al.  Quantile and histogram estimation , 2001, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304).

[5]  R. G. Ingalls,et al.  PROCEEDINGS OF THE 2004 WINTER SIMULATION CONFERENCE , 2004 .

[6]  James R. Wilson,et al.  Correlation-induction techniques for estimating quantiles in simulation experiments , 1995, WSC '95.

[7]  W. David Kelton,et al.  Estimating steady-state distributions via simulation-generated histograms , 2008, Comput. Oper. Res..

[8]  André Heck,et al.  Introduction to Maple, 3rd edition , 2003 .

[9]  Thomas E. Wehrly Fitting Statistical Distributions: The Generalized Lambda Distribution and Generalized Bootstrap Methods , 2002, Technometrics.

[10]  R. Fisher,et al.  148: Moments and Cumulants in the Specification of Distributions. , 1938 .

[11]  Natalie M. Steiger,et al.  Output analysis: ASAP2: an improved batch means procedure for simulation output analysis , 2002, WSC '02.

[12]  S. Jaschke The Cornish-Fisher-Expansion in the Context of Delta - Gamma - Normal Approximations , 2002 .

[13]  B. Nelson,et al.  Control Variates for Probability and Quantile Estimation , 1998 .

[14]  Philip Heidelberger,et al.  Quantile Estimation in Dependent Sequences , 1984, Oper. Res..

[15]  André Heck,et al.  Introduction to Maple , 1993 .

[16]  Jesus Miguel,et al.  Adjusting forecast intervals in arch‐m models , 2002 .

[17]  W. David Kelton,et al.  Mean estimation based on phi-mixing sequences , 2000, Proceedings 33rd Annual Simulation Symposium (SS 2000).

[18]  Donald L. Iglehart,et al.  Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..

[19]  Lee W. Schruben,et al.  RESOURCE-DRIVEN AND JOB-DRIVEN SIMULATIONS , 2002 .

[20]  W. David Kelton,et al.  Quantile and tolerance-interval estimation in simulation , 2006, Eur. J. Oper. Res..

[21]  J.E. McNeill,et al.  Indirect estimation of cycle time quantiles from discrete event simulation models using the Cornish-Fisher expansion , 2003, Proceedings of the 2003 Winter Simulation Conference, 2003..

[22]  Lee W. Schruben,et al.  Fast Simulations of Large-Scale Highly Congested Systems , 2003, Simul..

[23]  Murat Kulahci,et al.  Simulation-based cycle-time quantile estimation in manufacturing settings employing non-FIFO dispatching policies , 2009, J. Simulation.

[24]  P. Robinson,et al.  Advances in Econometrics: Time series with strong dependence , 1994 .

[25]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[26]  Imrich Chlamtac,et al.  The P2 algorithm for dynamic calculation of quantiles and histograms without storing observations , 1985, CACM.

[27]  Ronald W. Shephard,et al.  Mathematics of Statistics, Part One. , 1948 .

[28]  D. Goldsman,et al.  ASAP2: an improved batch means procedure for simulation output analysis , 2002, Proceedings of the Winter Simulation Conference.

[29]  V. S. Gordon A note on optimal assignment of slack due-dates in single-machine scheduling , 1993 .

[30]  W. Whitt Planning queueing simulations , 1989 .

[31]  Michael C. Fu,et al.  Probabilistic Error Bounds for Simulation Quantile Estimators , 2003, Manag. Sci..

[32]  Oliver Rose ESTIMATION OF THE CYCLE TIME DISTRIBUTION OF A WAFER FAB BY A SIMPLE SIMULATION MODEL , 1999 .

[33]  Barry L. Nelson,et al.  Estimation of percentiles of cycle time in manufacturing simulation , 2005, Proceedings of the Winter Simulation Conference, 2005..

[34]  Manfred Mittler,et al.  On Cycle Times and Interdeparture Times in Semiconductor Manufacturing , 1995 .

[35]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[36]  J. Banks,et al.  Discrete-Event System Simulation , 1995 .