The negative binomial–beta Weibull regression model to predict the cure of prostate cancer

In this article, for the first time, we propose the negative binomial–beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.

[1]  Josemar Rodrigues,et al.  A Bayesian long-term survival model parametrized in the cured fraction. , 2009, Biometrical journal. Biometrische Zeitschrift.

[2]  Deo Kumar Srivastava,et al.  The exponentiated Weibull family: a reanalysis of the bus-motor-failure data , 1995 .

[3]  Mário de Castro,et al.  A hands-on approach for fitting long-term survival models under the GAMLSS framework , 2010, Comput. Methods Programs Biomed..

[4]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[5]  R. Écochard,et al.  Promotion Time Models with Time‐Changing Exposure and Heterogeneity: Application to Infectious Diseases , 2008, Biometrical journal. Biometrische Zeitschrift.

[6]  Debasis Kundu,et al.  Generalized Rayleigh distribution: different methods of estimations , 2005, Comput. Stat. Data Anal..

[7]  R. Maller,et al.  Survival Analysis with Long-Term Survivors , 1996 .

[8]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[9]  D. Kundu,et al.  Theory & Methods: Generalized exponential distributions , 1999 .

[10]  M. May Bayesian Survival Analysis. , 2002 .

[11]  J G Ibrahim,et al.  Estimating Cure Rates From Survival Data , 2003, Journal of the American Statistical Association.

[12]  Joseph Berkson,et al.  Survival Curve for Cancer Patients Following Treatment , 1952 .

[13]  M. Kattan,et al.  Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[14]  J. Boag,et al.  Maximum Likelihood Estimates of the Proportion of Patients Cured by Cancer Therapy , 1949 .

[15]  W. Piegorsch Maximum likelihood estimation for the negative binomial dispersion parameter. , 1990, Biometrics.

[16]  Heping Zhang,et al.  A diagnostic procedure based on local influence , 2004 .

[17]  Michael W Kattan,et al.  Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  Sudhir Paul,et al.  Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. , 2005, Biometrics.

[19]  Vicente G Cancho,et al.  Generalized log-gamma regression models with cure fraction , 2009, Lifetime data analysis.

[20]  J. Hilbe Negative Binomial Regression: Preface , 2007 .

[21]  Joseph G. Ibrahim,et al.  Cure rate models: A unified approach , 2005 .

[22]  A Yu Yakovlev,et al.  Stochastic Models of Tumor Latency and Their Biostatistical Applications , 1996 .

[23]  Edwin M. M. Ortega,et al.  The generalized log-gamma mixture model with covariates: local influence and residual analysis , 2009, Stat. Methods Appl..

[24]  Bradley P Carlin,et al.  Flexible Cure Rate Modeling Under Latent Activation Schemes , 2007, Journal of the American Statistical Association.

[25]  Abdel H. El-Shaarawi,et al.  Negative Binomial Distribution , 2006 .