Revisiting the Geometry of a Ternary Diagram with the Half-Taxi Metric

An alternative definition of distance is presented for observations plotted in a ternary diagram and, more generally, for observations in a compositional data set. This definition, which conforms to the triangular coordinate system of the ternary diagram, is compared to other distance measures, and is shown to be tied to the covariance structure of compositional data. Angular differences are also discussed briefly in an Appendix.

[1]  F. Agterberg,et al.  Spatial relationships of multivariate data , 1992 .

[2]  P. Lenk,et al.  A latent class procedure for the structural analysis of two-way compositional data , 1993 .

[3]  J. B. Maynard,et al.  Detrital Modes of Recent Deep‐Sea Sands and their Relation to Tectonic Setting: A First Approximation , 1981 .

[4]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[5]  W. Krzanowski,et al.  A Characterization of Principal Components for Projection Pursuit , 1999 .

[6]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[7]  Mike Baxter,et al.  Principal component and correspondence analysis of compositional data: some similarities , 1990 .

[8]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[9]  D. F. Watson,et al.  Angles measure compositional differences , 1988 .

[10]  J. Aitchison Principal component analysis of compositional data , 1983 .

[11]  John W. Tukey,et al.  Analyzing data: Sanctification or detective work? , 1969 .

[12]  J. Aitchison On criteria for measures of compositional difference , 1992 .

[13]  John C. Butler,et al.  Trends in ternary petrologic variation diagrams; fact or fantasy? , 1979 .

[14]  Paul E. Green,et al.  Mathematical Tools for Applied Multivariate Analysis , 1976 .

[15]  B. O'neill Elementary Differential Geometry , 1966 .

[16]  Eric Grunsky,et al.  Some aspects of transformations of compositional data and the identification of outliers , 1996 .

[17]  M. Peisach,et al.  Correspondence analysis and its application in multielemental trace analysis , 1985 .

[18]  D. F. Watson,et al.  Algebraic dispersion fields on ternary diagrams , 1987 .

[19]  R. F. Ling,et al.  Probability Tables for Cluster Analysis Based on a Theory of Random Graphs , 1976 .

[20]  Peter G. Bryant,et al.  Geometry, Statistics, Probability: Variations on a Common Theme , 1984 .

[21]  E. Krause,et al.  Taxicab Geometry: An Adventure in Non-Euclidean Geometry , 1987 .

[22]  R. Ingersoll Petrofacies and Petrologic Evolution of the Late Cretaceous Fore-Arc Basin, Northern and Central California , 1978, The Journal of Geology.

[23]  Clifford R. Stanley,et al.  Descriptive statistics forN-dimensional closed arrays: A spherical coordinate approach , 1990 .

[24]  Roger B. Nelsen,et al.  Correlation, Regression Lines, and Moments of Inertia , 1998 .