David Makinson and the extension of classical logic

There are two major ways to deal with the limitations of classical logic. It can be replaced by systems representing alternative accounts of the laws of thought (non-classical logic), or it can be supplemented with non-inferential mechanisms. David Makinson has a leading role as proponent of the latter approach in the form of the inferential-preferential method in which classical logic is combined with representations of preference or choice. This has turned out to be a highly efficient and versatile method. Its applications in non-monotonic logic and belief revision are used as examples.

[1]  David Makinson,et al.  On the logic of theory change: Safe contraction , 1985, Stud Logica.

[2]  Sven Ove Hansson,et al.  Applying Normative Rules with Restraint , 1997 .

[3]  Sven Ove Hansson,et al.  Specified Meet Contraction , 2008 .

[4]  Adam J. Grove,et al.  Two modellings for theory change , 1988, J. Philos. Log..

[5]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[6]  Peter Gärdenfors,et al.  Nonmonotonic Inference Based on Expectations , 1994, Artif. Intell..

[7]  Wilfrid Hodges,et al.  Traditional Logic, Modern Logic and Natural Language , 2009, J. Philos. Log..

[8]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[9]  David Makinson,et al.  Bridges from classical to nonmonotonic logic , 2005, Texts in computing.

[10]  J. M. Larrazabal,et al.  Reasoning about change , 1991 .

[11]  Sven Ove Hansson Blockage Contraction , 2013, J. Philos. Log..

[12]  Leon van der Torre,et al.  Input/Output Logics , 2000, J. Philos. Log..

[13]  Peter Gärdenfors,et al.  Revisions of Knowledge Systems Using Epistemic Entrenchment , 1988, TARK.

[14]  David Stuart Robertson,et al.  Automated Reasoning with Uncertainties , 1992, Logic at Work.

[15]  Gerhard Brewka Cumulative Default Logic: In Defense of Nonmonotonic Inference Rules , 1991, Artif. Intell..

[16]  Peter Gärdenfors The Role of Expectations in Reasoning , 1992, Logic at Work.

[17]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[18]  D. Makinson,et al.  Intuitionistic logic and elementary rules , 2011 .

[19]  Robert K. Meyer,et al.  Whither Relevant Arithmetic? , 1992, J. Symb. Log..

[20]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[21]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[22]  André Fuhrmann An Essay on Contraction , 1996 .

[23]  Peter Gärdenfors,et al.  Relations between the logic of theory change and nonmonotonic logic , 1989, The Logic of Theory Change.

[24]  Hans Rott,et al.  Change, choice and inference - a study of belief revision and nonmonotonic reasoning , 2001, Oxford logic guides.

[25]  Johan van Benthem,et al.  Logic and Reasoning: do the facts matter? , 2008, Stud Logica.