Optimization of Fractional-Order RLC Filters

This paper introduces some generalized fundamentals for fractional-order RLβCα circuits as well as a gradient-based optimization technique in the frequency domain. One of the main advantages of the fractional-order design is that it increases the flexibility and degrees of freedom by means of the fractional parameters, which provide new fundamentals and can be used for better interpretation or best fit matching with experimental results. An analysis of the real and imaginary components, the magnitude and phase responses, and the sensitivity must be performed to obtain an optimal design. Also new fundamentals, which do not exist in conventional RLC circuits, are introduced. Using the gradient-based optimization technique with the extra degrees of freedom, several inverse problems in filter design are introduced. The concepts introduced in this paper have been verified by analytical, numerical, and PSpice simulations with different examples, showing a perfect matching.

[1]  S. Westerlund,et al.  Capacitor theory , 1994 .

[2]  B. T. Krishna,et al.  Active and Passive Realization of Fractance Device of Order 1/2 , 2008 .

[3]  Ahmed M. Soliman,et al.  Fractional order filter with two fractional elements of dependant orders , 2012, Microelectron. J..

[4]  I. Schäfer,et al.  Modelling of lossy coils using fractional derivatives , 2008 .

[5]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Ahmed S. Elwakil,et al.  On the Generalization of Second-Order Filters to the fractional-Order Domain , 2009, J. Circuits Syst. Comput..

[7]  M. Nakagawa,et al.  Basic Characteristics of a Fractance Device , 1992 .

[8]  J. A. Tenreiro Machado,et al.  Fractional order electrical impedance of fruits and vegetables , 2006 .

[9]  Ahmed S. Elwakil,et al.  Extracting the Cole-Cole impedance model parameters without direct impedance measurement , 2010 .

[10]  Dominik Sierociuk,et al.  Identification of Parameters of a Half-Order System , 2012, IEEE Transactions on Signal Processing.

[11]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[12]  Isabel S. Jesus,et al.  Development of fractional order capacitors based on electrolyte processes , 2009 .

[13]  R. Martin,et al.  Modeling electrochemical double layer capacitor, from classical to fractional impedance , 2008, MELECON 2008 - The 14th IEEE Mediterranean Electrotechnical Conference.

[14]  Khaled N. Salama,et al.  Fractional-Order RC and RL Circuits , 2012, Circuits Syst. Signal Process..

[15]  Kazuhiro Saito,et al.  Simulation of Power-Law Relaxations by Analog Circuits : Fractal Distribution of Relaxation Times and Non-integer Exponents , 1993 .

[16]  I. Petráš,et al.  Fractional-order circuit elements with memory , 2012, Proceedings of the 13th International Carpathian Control Conference (ICCC).

[17]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[18]  Georges L. Loum,et al.  An analytical expression for the input impedance of a fractal tree obtained by a microelectronical process and experimental measurements of its non-integral dimension , 2007 .

[19]  Neville J. Ford,et al.  The numerical solution of fractional differential equations: Speed versus accuracy , 2001, Numerical Algorithms.

[20]  G. Ablart,et al.  Influence of the electrical parameters on the input impedance of a fractal structure realised on silicon , 2005 .

[21]  A. Elwakil,et al.  Design equations for fractional-order sinusoidal oscillators: Four practical circuit examples , 2008 .

[22]  Ivo Petras,et al.  Fractional-Order Nonlinear Systems , 2011 .

[23]  J. Valsa,et al.  Fractional — Order electrical components, networks and systems , 2012, Proceedings of 22nd International Conference Radioelektronika 2012.

[24]  Richard L Magin,et al.  Fractional calculus in bioengineering, part 2. , 2004, Critical reviews in biomedical engineering.

[25]  R. Magin,et al.  Modeling the Cardiac Tissue Electrode Interface Using Fractional Calculus , 2008 .

[26]  Yoshiaki Hirano,et al.  Simulation of Fractal Immittance by Analog Circuits: An Approach to the Optimized Circuits , 1999 .

[27]  Khaled N. Salama,et al.  Passive and Active Elements Using Fractional ${\rm L}_{\beta} {\rm C}_{\alpha}$ Circuit , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  Zhongxiang Shen,et al.  Dual-Band Ortho-Mode Transducer with Irregularly Shaped Diaphragm , 2011 .

[29]  Khaled N. Salama,et al.  The fractional-order modeling and synchronization of electrically coupled neuron systems , 2012, Comput. Math. Appl..

[30]  Muhammad Faryad,et al.  Fractional Rectangular Waveguide , 2007 .

[31]  Georges L. Loum,et al.  Use of a Component with Fractional Impedance in the Realization of an Analogical Regulator of Order  , 2008 .

[32]  B. T. Krishna Studies on fractional order differentiators and integrators: A survey , 2011, Signal Process..

[33]  Hui Li,et al.  Fractional-moment Capital Asset Pricing model , 2009 .

[34]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[35]  Pranab K. Dutta,et al.  Modeling of a capacitive probe in a polarizable medium , 2005 .

[36]  Ahmed S. Elwakil,et al.  First-Order Filters Generalized to the fractional Domain , 2008, J. Circuits Syst. Comput..

[38]  I. Petráš Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation , 2011 .

[39]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[40]  C. Halijak,et al.  Approximation of Fractional Capacitors (1/s)^(1/n) by a Regular Newton Process , 1964 .

[41]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[42]  S. Roy On the Realization of a Constant-Argument Immittance or Fractional Operator , 1967, IEEE Transactions on Circuit Theory.

[43]  Todd C Doehring,et al.  Fractional order viscoelasticity of the aortic valve cusp: an alternative to quasilinear viscoelasticity. , 2005, Journal of biomechanical engineering.