One-dimensional CdS nanostructures: synthesis, properties, and applications.

One-dimensional (1D) semiconductor nanostructures are of prime interest due to their potential in investigating the size and dimensionality dependence of the materials' physical properties and constructing nanoscale electronic and optoelectronic devices. Cadmium sulfide (CdS) is an important semiconductor compound of the II-VI group, and its synthesis and properties have been of growing interest owing to prominent applications in several fields. This article provides a comprehensive review of the state-of-the-art research activities that focus on the rational synthesis, novel properties and unique applications of 1D CdS nanostructures in nanotechnology. It begins with the rational design and synthesis of 1D CdS nanostructures, and then highlights a range of unique properties and applications (e.g. photoluminescence, cathodoluminescence, electrochemiluminescence, photocatalysis, lasers, waveguides, modulators, solar cells, field-effect transistors, photodetectors, field-emitters, and nanogenerators) associated with them. Finally, the review is concluded with the author outlook of the perspectives with respect to future research on 1D CdS nanostructures.

[1]  Haoshen Zhou,et al.  Centimeter‐Long V2O5 Nanowires: From Synthesis to Field‐Emission, Electrochemical, Electrical Transport, and Photoconductive Properties , 2010, Advanced materials.

[2]  Y. Bando,et al.  An Efficient Way to Assemble ZnS Nanobelts as Ultraviolet‐Light Sensors with Enhanced Photocurrent and Stability , 2010 .

[3]  Yitai Qian,et al.  High‐Performance Blue/Ultraviolet‐Light‐Sensitive ZnSe‐Nanobelt Photodetectors , 2009, Advanced materials.

[4]  Tianyou Zhai,et al.  ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors , 2009 .

[5]  A. Govindaraj,et al.  Synthesis of Inorganic Nanotubes , 2009 .

[6]  J. Yao,et al.  Carbon-assisted morphological manipulation of CdS nanostructures and their cathodoluminescence properties , 2009 .

[7]  G. Meng,et al.  Building desired heterojunctions of semiconductor CdS nanowire and carbon nanotube via AAO template-based approach , 2009 .

[8]  Z. Key One-Dimensional (1D) ZnS Nanomaterials and Nanostructures , 2009 .

[9]  C. Boothroyd,et al.  Synthesis of monodisperse CdS nanowires and their photovoltaic applications , 2009 .

[10]  Litao Sun,et al.  Synthesis of uniform CdS nanowires in high yield and its single nanowire electrical property , 2009 .

[11]  Changze Liu,et al.  Logic gates constructed on CdS nanobelt field-effect transistors with high-κ HfO2 top-gate dielectrics , 2009 .

[12]  A. Govindaraj,et al.  Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. , 2009, Nanoscale.

[13]  F. Sun,et al.  Photochemical growth of cadmium-rich CdS nanotubes at the air–water interface and their use in photocatalysis , 2009 .

[14]  X. Wen,et al.  Ultrahigh-performance inverters based on CdS nanobelts. , 2009, ACS nano.

[15]  R. Ma,et al.  Schottky junction photovoltaic devices based on CdS single nanobelts , 2009, Nanotechnology.

[16]  Shih‐Yuan Lu,et al.  Modulation and Improvement on Separation of Photoinduced Charge Carriers in CdS−Metal Nanoheterostructures , 2009 .

[17]  Tae Geun Kim,et al.  Growth of CdS Nanorod-Coated TiO2 Nanowires on Conductive Glass for Photovoltaic Applications , 2009 .

[18]  Haibo Zeng,et al.  A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors , 2009, Sensors.

[19]  J. S. Lee,et al.  Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion , 2009 .

[20]  Y. Bando,et al.  Characterization, cathodoluminescence and field-emission properties of morphology-tunable CdS micro/nanostructures , 2009, 2010 3rd International Nanoelectronics Conference (INEC).

[21]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[22]  A. Datta,et al.  Growth, Optical, and Field Emission Properties of Aligned CdS Nanowires , 2009 .

[23]  S. Ray,et al.  Enhanced broadband photoresponse of Ge/CdS nanowire radial heterostructures , 2009 .

[24]  Takashi Sekiguchi,et al.  Single‐Crystalline ZnS Nanobelts as Ultraviolet‐Light Sensors , 2009 .

[25]  Yinglin Song,et al.  Field Emission Properties and Fabrication of CdS Nanotube Arrays , 2009, Nanoscale research letters.

[26]  Yuexiang Li,et al.  Synthesis of CdS Nanorods by an Ethylenediamine Assisted Hydrothermal Method for Photocatalytic Hydrogen Evolution , 2009 .

[27]  Chao Yang,et al.  Preparation and tunable photoluminescence of alloyed CdSxSe1−x nanorods , 2009 .

[28]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[29]  H. Zeng,et al.  Morphology-dependent stimulated emission and field emission of ordered CdS nanostructure arrays. , 2009, ACS nano.

[30]  Y. Hao,et al.  P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires , 2009 .

[31]  A. Pan,et al.  Ordered CdS micro/nanostructures on CdSe nanostructures , 2009, Nanotechnology.

[32]  Junqing Hu,et al.  Uniform, thin and continuous graphitic carbon tubular coatings on CdS nanowires , 2009 .

[33]  S. De,et al.  Optical Properties of the Type-II Core−Shell TiO2@CdS Nanorods for Photovoltaic Applications , 2009 .

[34]  Yanqing An,et al.  Ordered Mesostructured CdS Nanowire Arrays with Rectifying Properties , 2009, Nanoscale research letters.

[35]  Saiful I. Khondaker,et al.  Solvothermal Synthesis of High-Aspect Ratio Alloy Semiconductor Nanowires : Cd1-xZnxS, a Case Study , 2009 .

[36]  Po-Chiang Chen,et al.  Devices and chemical sensing applications of metal oxide nanowires , 2009 .

[37]  Q. Lu,et al.  Single Crystalline Cadmium Sulfide Nanowires with Branched Structure , 2009, Nanoscale Research Letters.

[38]  Shui-Tong Lee,et al.  Bicrystalline cdS nanoribbons , 2009 .

[39]  Y. Bando,et al.  Solvothermal Synthesis, Cathodoluminescence, and Field‐Emission Properties of Pure and N‐Doped ZnO Nanobullets , 2009 .

[40]  Zhong Lin Wang Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. , 2008, ACS nano.

[41]  Zhong-Lin Wang,et al.  Alternating the Output of a CdS Nanowire Nanogenerator by a White‐Light‐Stimulated Optoelectronic Effect , 2008 .

[42]  Hongzheng Chen,et al.  One-Step Fabrication of CdS Nanorod Arrays via Solution Chemistry , 2008 .

[43]  Y. Feng,et al.  Novel CdS Nanostructures: Synthesis and Field Emission , 2008 .

[44]  N. Hullavarad,et al.  Cadmium sulphide (CdS) nanotechnology: synthesis and applications. , 2008, Journal of nanoscience and nanotechnology.

[45]  G. Meng,et al.  Two-segment CdS/Bi nanowire heterojunctions arrays and their electronic transport properties , 2008 .

[46]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[47]  A. Pan,et al.  Controllable Fabrication of High-Quality 6-Fold Symmetry-Branched CdS Nanostructures with ZnS Nanowires as Templates , 2008 .

[48]  Xijin Xu,et al.  Crystallinity‐Controlled Germanium Nanowire Arrays: Potential Field Emitters , 2008 .

[49]  J. Yao,et al.  Size-tunable synthesis of tetrapod-like ZnS nanopods by seed-epitaxial metal-organic chemical vapor deposition , 2008 .

[50]  Xijin Xu,et al.  Direct Growth of Al Nanowire Arrays: Thermal Expansion and Field Emission Properties , 2008 .

[51]  Y. Bando,et al.  Multiangular Branched ZnS Nanostructures with Needle-Shaped Tips: Potential Luminescent and Field-Emitter Nanomaterial , 2008 .

[52]  M. Kuno,et al.  Band-filling of solution-synthesized CdS nanowires. , 2008, ACS nano.

[53]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[54]  Yong Ding,et al.  Piezoelectric nanogenerator using CdS nanowires , 2008 .

[55]  J. Yao,et al.  Polarity determination for the CdxZn1-xS nanocombs by EELS. , 2007, Journal of electron microscopy.

[56]  Zhengguo Jin,et al.  Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays , 2007, Nanotechnology.

[57]  M. R. Kim,et al.  Synthesis and Characterization of Highly Luminescent CdS@ZnS Core-Shell Nanorods , 2007 .

[58]  Hui Wu,et al.  Photoswitches and Memories Assembled by Electrospinning Aluminum‐Doped Zinc Oxide Single Nanowires , 2007 .

[59]  Yi Cui,et al.  Ordered Vacancy Compounds and Nanotube Formation in CuInSe2-CdS Core-Shell Nanowires , 2007 .

[60]  Youngjin Choi,et al.  Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets , 2007 .

[61]  Zhenhua Ni,et al.  Stimulated emission of CdS nanowires grown by thermal evaporation , 2007 .

[62]  P. Chou,et al.  Surfactant- and temperature-controlled CdS nanowire formation. , 2007, Small.

[63]  L. Fan,et al.  Directed Assembly of Hierarchical CdS Nanotube Arrays from CdS Nanoparticles: Enhanced Solid State Electro‐chemiluminescence in H2O2 Solution , 2007 .

[64]  Ren-Min Ma,et al.  High-performance logic circuits constructed on single CdS nanowires. , 2007, Nano letters.

[65]  Dmitri Golberg,et al.  Boron Nitride Nanotubes , 2007 .

[66]  Jeunghee Park,et al.  Chemical Conversion Reaction between CdS Nanobelts and ZnS Nanobelts by Vapor Transport , 2007 .

[67]  G. Shen,et al.  Enhanced Field Emission Performance of ZnO Nanorods by Two Alternative Approaches , 2007 .

[68]  L. Samuelson,et al.  Core–shell InP–CdS nanowires: fabrication and study , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[69]  Shui-Tong Lee,et al.  Photoresponse Properties of CdSe Single‐Nanoribbon Photodetectors , 2007 .

[70]  Yongfang Li,et al.  Synthesis and Cathodoluminescence of Morphology-Tunable SiO2 Nanotubes and ZnS/SiO2 Core−Shell Structures Using CdSe Nanocrystals as the Seeds , 2007 .

[71]  Ren-Min Ma,et al.  Synthesis of CdS nanowire networks and their optical and electrical properties , 2007 .

[72]  R. Ma,et al.  High-performance nano-Schottky diodes and nano-MESFETs made on single CdS nanobelts. , 2007, Nano letters.

[73]  Shui-Tong Lee,et al.  Heteroepitaxial growth and optical properties of ZnS nanowire arrays on CdS nanoribbons , 2007 .

[74]  G. G. Qin,et al.  Enhancement-mode metal-semiconductor field-effect transistors based on single n-CdS nanowires , 2007 .

[75]  Haizheng Zhong,et al.  Design and Fabrication of Rocketlike Tetrapodal CdS Nanorods by Seed-Epitaxial Metal−Organic Chemical Vapor Deposition , 2007 .

[76]  Yeonwoong Jung,et al.  Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. , 2007, Nano letters.

[77]  Yongfang Li,et al.  Manipulation of the Morphology of ZnSe Sub-Micron Structures Using CdSe Nanocrystals as the Seeds , 2007 .

[78]  J. Yao,et al.  Synthesis of ordered ZnS nanotubes by MOCVD-template method , 2006 .

[79]  Shui-Tong Lee,et al.  Transport properties of single-crystal CdS nanoribbons , 2006 .

[80]  R. Ma,et al.  Synthesis of high quality n-type CdS nanobelts and their applications in nanodevices , 2006 .

[81]  Zhong Lin Wang,et al.  High-quality alloyed CdSxSe1-x whiskers as waveguides with tunable stimulated emission. , 2006, The journal of physical chemistry. B.

[82]  Zhong Lin Wang,et al.  Growth of anisotropic one-dimensional ZnS nanostructures , 2006 .

[83]  J. Yao,et al.  A simple hydrothermal method for the large-scale synthesis of single-crystal potassium tungsten bronze nanowires. , 2006, Chemistry.

[84]  Y. Zhao,et al.  Fabrication, structural characterization and photoluminescence of single-crystal ZnxCd1−xS zigzag nanowires , 2006, Nanotechnology.

[85]  Liu Yingkai,et al.  The photoconductance of a single CdS nanoribbon , 2006 .

[86]  J. Yao,et al.  Growth of single crystalline ZnxCd1 xS nanocombs by metallo-organic chemical vapor deposition , 2006 .

[87]  Youngjin Choi,et al.  Band gap modulation in CdSxSe1−x nanowires synthesized by a pulsed laser ablation with the Au catalyst , 2006 .

[88]  S. T. Lee,et al.  Photoconductive characteristics of single-crystal CdS nanoribbons. , 2006, Nano letters.

[89]  Joseph Kost,et al.  Switchable assembly of ultra narrow CdS nanowires and nanorods. , 2006, Journal of the American Chemical Society.

[90]  R. Zhang,et al.  Direct synthesis and characterization of CdS nanobelts , 2006 .

[91]  Ali Ghezelbash,et al.  Self-assembled stripe patterns of CdS nanorods. , 2006, Nano letters.

[92]  Yi-Feng Lin,et al.  Non-catalytic and template-free growth of aligned CdS nanowires exhibiting high field emission current densities. , 2006, Chemical communications.

[93]  Zhiyong Fan,et al.  Quasi-one-dimensional metal oxide materials—Synthesis, properties and applications , 2006 .

[94]  Shuhong Yu,et al.  Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. , 2006, The journal of physical chemistry. B.

[95]  D. Ng,et al.  Controlled synthesis of CdS nanobelts and the study of their cathodoluminescence , 2006 .

[96]  Chen Li,et al.  The selective synthesis of single-crystalline CdS nanobelts and nanowires by thermal evaporation at lower temperature , 2006 .

[97]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[98]  Weihua Tang,et al.  Preparation and characterization of CdS/Si coaxial nanowires , 2006 .

[99]  S. Chaudhuri,et al.  Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process. , 2006, The journal of physical chemistry. B.

[100]  Guodong Li,et al.  Controlled growth and photocatalytic properties of CdS nanocrystals implanted in layered metal hydroxide matrixes. , 2005, The journal of physical chemistry. B.

[101]  Charles M. Lieber,et al.  Semiconductor nanowire laser and nanowire waveguide electro-optic modulators , 2005 .

[102]  A. Pan,et al.  Optical waveguide through CdS nanoribbons. , 2005, Small.

[103]  S. Chaudhuri,et al.  Synthesis and optical properties of CdS nanoribbons. , 2005, The journal of physical chemistry. B.

[104]  Hongyuan Chen,et al.  Double-template synthesis of CdS nanotubes with strong electrogenerated chemiluminescence. , 2005, Small.

[105]  Shih‐Yuan Lu,et al.  One‐Step Preparation of Coaxial CdS–ZnS and Cd1–xZnxS–ZnS Nanowires , 2005 .

[106]  Shui-Tong Lee,et al.  Fabrication, morphology, structure, and photoluminescence of ZnS and CdS nanoribbons , 2005 .

[107]  Shui-Tong Lee,et al.  Wavelength‐Controlled Lasing in ZnxCd1–xS Single‐Crystal Nanoribbons , 2005, Advanced materials.

[108]  Tongtong Wang,et al.  Optoelectronic characteristics of single CdS nanobelts , 2005 .

[109]  Tongtong Wang,et al.  CdS nanobelts as photoconductors , 2005 .

[110]  G. Yi,et al.  Synthesis of single-crystal CdS microbelts using a modified thermal evaporation method and their photoluminescence. , 2005, The journal of physical chemistry. B.

[111]  Wenlong Wang,et al.  Electrical conductivity of single CdS nanowire synthesized by aqueous chemical growth , 2005 .

[112]  Chunrui Wang,et al.  Structure control of CdS nanobelts and their luminescence properties , 2005 .

[113]  G. Shen,et al.  CdS Multipod-Based Structures through a Thermal Evaporation Process , 2005 .

[114]  T. Gao,et al.  Catalyst-Assisted Vapor−Liquid−Solid Growth of Single-Crystal CdS Nanobelts and Their Luminescence Properties , 2004 .

[115]  Shui-Tong Lee,et al.  High-quality CdS nanoribbons with lasing cavity , 2004 .

[116]  Yu Huang,et al.  Nanowires for integrated multicolor nanophotonics. , 2004, Small.

[117]  Shih‐Yuan Lu,et al.  One-step preparation of coaxial CdS-ZnS nanowires. , 2004, Chemical communications.

[118]  Charles M. Lieber,et al.  Nanowire Photonic Circuit Elements , 2004 .

[119]  Matt Law,et al.  Nanoribbon Waveguides for Subwavelength Photonics Integration , 2004, Science.

[120]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[121]  Lide Zhang,et al.  Fabrication of Single-Crystalline Semiconductor CdS Nanobelts by Vapor Transport , 2004 .

[122]  Mang Wang,et al.  A facile room-temperature chemical reduction method to TiO2@CdS core/sheath heterostructure nanowires , 2004 .

[123]  Xiangyang Ma,et al.  Synthesis of CdS nanotubes by chemical bath deposition , 2004 .

[124]  J. Ge,et al.  Selective Atmospheric Pressure Chemical Vapor Deposition Route to CdS Arrays, Nanowires, and Nanocombs , 2004 .

[125]  Xian‐Wen Wei,et al.  Surfactant-free route to hexagonal CdS nanotubes under ultrasonic irradiation in aqueous solution at room temperature , 2004 .

[126]  K. Hirao,et al.  Fabrication and characterization of CdS nanotube arrays in porous anodic aluminum oxide templates , 2003 .

[127]  J. Yao,et al.  Template-based melting-recrystallization route to organic nanotubes , 2003 .

[128]  Charles M Lieber,et al.  Synthesis of CdS and ZnS nanowires using single-source molecular precursors. , 2003, Journal of the American Chemical Society.

[129]  J. Jiao,et al.  Catalytic growth of CdS nanobelts and nanowires on tungsten substrates , 2003 .

[130]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[131]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[132]  Xiangyang Ma,et al.  Directional CdS nanowires fabricated by chemical bath deposition , 2002 .

[133]  Yi Xie,et al.  In situ micelle–template–interface reaction route to CdS nanotubes and nanowires , 2002 .

[134]  D. Zhao,et al.  A Simple Route for the synthesis of Multi-Armed CdS Nanorod-Based Materials , 2002 .

[135]  G. Meng,et al.  On the Growth of CdS Nanowires by the Evaporation of CdS Nanopowders , 2002 .

[136]  Y. Qian,et al.  Microwave-templated synthesis of CdS nanotubes in aqueous solution at room temperature , 2002 .

[137]  T. Hirai,et al.  Immobilization of CdS nanoparticles formed in reverse micelles onto alumina particles and their photocatalytic properties , 2002 .

[138]  Jun Zhang,et al.  Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence , 2002 .

[139]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[140]  J. Cheon,et al.  Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. , 2001, Journal of the American Chemical Society.

[141]  Younan Xia,et al.  Polymer‐Controlled Growth of CdS Nanowires , 2000 .

[142]  Di Chen,et al.  Preparation of CdS Single‐Crystal Nanowires by Electrochemically Induced Deposition , 2000 .

[143]  Xiangfeng Duan,et al.  General Synthesis of Compound Semiconductor Nanowires , 2000 .

[144]  Jing Ming Xu,et al.  Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates , 1996 .

[145]  Horst Weller,et al.  Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles , 1987 .

[146]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[147]  Yan Li,et al.  Sacrificial template growth of CdS nanotubes from Cd(OH) 2 nanowires , 2006 .

[148]  Xiaoping Shen,et al.  Fabrication of well-aligned CdS nanotubes by CVD-template method , 2005 .

[149]  Y. Qian,et al.  A cluster growth route to quantum-confined CdS nanowires , 1999 .

[150]  Y. Qian,et al.  CdS/CdSe core/sheath nanostructures obtained from CdS nanowires , 1999 .