Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation

[1]  Gherardo Chirici,et al.  Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework , 2016 .

[2]  S. Magnussen,et al.  Model-calibrated k-nearest neighbor estimators , 2016 .

[3]  R. McRoberts,et al.  Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume , 2016, Remote sensing of environment.

[4]  Terje Gobakken,et al.  The effects of field plot size on model-assisted estimation of aboveground biomass change using multitemporal interferometric SAR and airborne laser scanning data , 2015 .

[5]  Terje Gobakken,et al.  LiDAR-supported estimation of change in forest biomass with time-invariant regression models , 2015 .

[6]  Annika Kangas,et al.  Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume , 2015 .

[7]  Steen Magnussen,et al.  Arguments for a model-dependent inference? , 2015 .

[8]  E. Næsset,et al.  Indirect and direct estimation of forest biomass change using forest inventory and airborne laser scanning data , 2015 .

[9]  Maria Chiara Pagliarella,et al.  Sampling strategies for estimating forest cover from remote sensing-based two-stage inventories , 2015, Forest Ecosystems.

[10]  Alan H. Welsh,et al.  Improving the Efficiency and Precision of Tree Counts in Pine Plantations Using Airborne LiDAR Data and Flexible-Radius Plots: Model-Based and Design-Based Approaches , 2015 .

[11]  Guoqing Sun,et al.  Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America1 , 2015 .

[12]  M. Holopainen,et al.  Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information , 2015 .

[13]  J. Buongiorno,et al.  Adaptive economic and ecological forest management under risk , 2015, Forest Ecosystems.

[14]  E. Næsset,et al.  An Estimator of Variance for Two-Stage Ratio Regression Estimators , 2014 .

[15]  R. McRoberts,et al.  Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon , 2014 .

[16]  Richard A. Birdsey,et al.  Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak–pine forest , 2014 .

[17]  Piermaria Corona,et al.  Estimation of standing wood volume in forest compartments by exploiting airborne laser scanning information: model-based, design-based, and hybrid perspectives , 2014 .

[18]  Liviu Theodor Ene,et al.  Efficient sampling strategies for forest inventories by spreading the sample in auxiliary space , 2014 .

[19]  Adrian Lanz,et al.  Integrating remote sensing and past inventory data under the new annual design of the Swiss National Forest Inventory using three-phase design-based regression estimation , 2014 .

[20]  Göran Ståhl,et al.  Sample-Based Estimation of Greenhouse Gas Emissions From Forests—A New Approach to Account for Both Sampling and Model Errors , 2014 .

[21]  D. Mandallaz Design-based properties of some small-area estimators in forest inventory with two-phase sampling , 2013 .

[22]  D. Hand An Introduction to Model‐Based Survey Sampling with Applications by Raymond L. Chambers, Robert G. Clark , 2013 .

[23]  R. Nelson,et al.  Comparison of precision of biomass estimates in regional field sample surveys and airborne LiDAR-assisted surveys in Hedmark County, Norway , 2013 .

[24]  E. Næsset,et al.  Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data , 2013, Stat. Methods Appl..

[25]  MandallazDaniel Design-based properties of some small-area estimators in forest inventory with two-phase sampling , 2013 .

[26]  Göran Ståhl,et al.  Model-assisted estimation of change in forest biomass over an 11 year period in a sample survey supported by airborne LiDAR: A case study with post-stratification to provide “activity data” , 2013 .

[27]  Jacob Strunk,et al.  Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables , 2012 .

[28]  Sassan Saatchi,et al.  A sample design for globally consistent biomass estimation using lidar data from the Geoscience Laser Altimeter System (GLAS) , 2012, Carbon Balance and Management.

[29]  Göran Ståhl,et al.  Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning , 2012 .

[30]  Terje Gobakken,et al.  Lidar sampling — Using an airborne profiler to estimate forest biomass in Hedmark County, Norway , 2012 .

[31]  Göran Ståhl,et al.  Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach , 2012 .

[32]  Jörgen Wallerman,et al.  Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM , 2012 .

[33]  S. Reutebuch,et al.  Model-Assisted Forest Yield Estimation with Light Detection and Ranging , 2012 .

[34]  G. Asner,et al.  A universal airborne LiDAR approach for tropical forest carbon mapping , 2011, Oecologia.

[35]  Robert Chambers,et al.  An Introduction to Model-Based Survey Sampling with Applications , 2012 .

[36]  Mark O. Kimberley,et al.  Airborne scanning LiDAR in a double sampling forest carbon inventory , 2012 .

[37]  R. Astrup,et al.  Small area estimation of forest attributes in the Norwegian National Forest Inventory , 2012, European Journal of Forest Research.

[38]  K. Skog,et al.  Estimates of carbon stored in harvested wood products from the United States forest service northern region, 1906-2010 , 2012, Carbon Balance and Management.

[39]  Göran Ståhl,et al.  Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area , 2011 .

[40]  Jacob Strunk,et al.  Using Airborne Light Detection and Ranging as a Sampling Tool for Estimating Forest Biomass Resources in the Upper Tanana Valley of Interior Alaska , 2011 .

[41]  T. Brandeis,et al.  Mapping tropical dry forest height, foliage height profiles and disturbance type and age with a time series of cloud-cleared Landsat and ALI image mosaics to characterize avian habitat , 2010 .

[42]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[43]  Ronald E. McRoberts,et al.  Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data , 2010 .

[44]  Erik Næsset,et al.  Deriving forest monitoring variables from X-band InSAR SRTM height , 2010 .

[45]  Göran Ståhl,et al.  Estimating Quebec provincial forest resources using ICESat/GLAS , 2009 .

[46]  Piermaria Corona,et al.  Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys , 2009 .

[47]  L. Fattorini,et al.  A two-phase sampling strategy for large-scale forest carbon budgets , 2009 .

[48]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[49]  S. Goetz,et al.  Reply to Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’ , 2008, Environmental Research Letters.

[50]  M. Nilsson,et al.  Combining national forest inventory field plots and remote sensing data for forest databases , 2008 .

[51]  J. Heikkinen,et al.  Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery , 2007 .

[52]  F. Breidt,et al.  Model-Assisted Estimation of Forest Resources With Generalized Additive Models , 2007 .

[53]  Lorenzo Fattorini,et al.  A three-phase sampling strategy for large-scale multiresource forest inventories , 2006 .

[54]  R. McRoberts A model-based approach to estimating forest area , 2006 .

[55]  F. Breidt,et al.  Model-Assisted Estimation for Complex Surveys Using Penalized Splines , 2005 .

[56]  E. Næsset Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .

[57]  T. Gregoire,et al.  Sampling Strategies for Natural Resources and the Environment , 2004 .

[58]  M. Nilsson,et al.  Applications using estimates of forest parameters derived from satellite and forest inventory data , 2002 .

[59]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[60]  Erik Næsset,et al.  Determination of Mean Tree Height of Forest Stands by Digital Photogrammetry , 2002 .

[61]  M. Köhl,et al.  Zur Auswirkung der Hangneigungskorrektur auf Schätzwerte im Schweizerischen Landesforstinventar (LFI) | Investigation of the effect of the slope correction method as applied in the Swiss National Forest Inventory of estimates , 2001 .

[62]  F. Breidt,et al.  Local polynomial regresssion estimators in survey sampling , 2000 .

[63]  T. Gregoire Design-based and model-based inference in survey sampling: appreciating the difference , 1998 .

[64]  G. E. Forden,et al.  The airborne laser , 1997 .

[65]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .

[66]  Carl-Erik Särndal,et al.  Model Assisted Survey Sampling , 1997 .

[67]  E. Tomppo,et al.  Satellite image-based national forest inventory of finland for publication in the igarss'91 digest , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.

[68]  Ross Nelson,et al.  Estimating forest biomass and volume using airborne laser data , 1988 .

[69]  R. Nelson,et al.  Determining forest canopy characteristics using airborne laser data , 1984 .

[70]  M. H. Hansen An Evaluation of Model-Dependent and Probability-Sampling Inferences in Sample Surveys , 1983 .

[71]  Juha Hyyppä,et al.  Effects of positional errors in model-assisted and model-based estimation of growing stock volume , 2016 .

[72]  Erik Næsset,et al.  Modeling and Estimating Change , 2014 .

[73]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[74]  Piermaria Corona,et al.  Design-based diagnostics for k-NN estimators of forest resourcesThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[75]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[76]  E. Tomppo National Forest Inventories : pathways for common reporting , 2010 .

[77]  Peter Scarth,et al.  Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery , 2009 .

[78]  S. Goetz,et al.  A first map of tropical Africa’s above-ground biomass derived from satellite imagery , 2008 .

[79]  Kim Kyu-Seong,et al.  Design-based and model-based Inferences in Survey Sampling , 2005 .

[80]  F. Breidt,et al.  LOCAL POLYNOMIAL REGRESSION ESTIMATORS IN SURVEY SAMPLING 1 , 2001 .

[81]  C. Cassel,et al.  Foundations of inference in survey sampling , 1977 .

[82]  J. Neyman On the Two Different Aspects of the Representative Method: the Method of Stratified Sampling and the Method of Purposive Selection , 1934 .