Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment

We develop a theoretical analysis of four-wave mixing used to generate photon pairs useful for quantum information processing. The analysis applies to a single mode microstructured fibre pumped by an ultra-short coherent pulse in the normal dispersion region. Given the values of the optical propagation constant inside the fibre, we can estimate the created number of photon pairs per pulse, their central wavelength and their respective bandwidth. We use the experimental results from a picosecond source of correlated photon pairs using a micro-structured fibre to validate the model. The fibre is pumped in the normal dispersion regime at 708 nm and phase matching is satisfied for widely spaced parametric wavelengths of 586 and 894 nm. We measure the number of photons per pulse using a loss-independent coincidence scheme and compare the results with the theoretical expectation. We show a good agreement between the theoretical expectations and the experimental results for various fibre lengths and pump powers.

[1]  Hong,et al.  Experimental realization of a localized one-photon state. , 1986, Physical review letters.

[2]  Jian-Wei Pan,et al.  Realization of a photonic controlled-NOT gate sufficient for quantum computation. , 2004, Physical Review Letters.

[3]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[4]  G. Christos Anomaly extraction from the path integral , 1983 .

[5]  Jun Chen,et al.  All-fiber photon-pair source for quantum communications: Improved generation of correlated photons. , 2004 .

[6]  Harald Weinfurter,et al.  Quantum Communication with Entangled Photons , 2000 .

[7]  Rainer Leonhardt,et al.  Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. , 2003, Optics letters.

[8]  Christian Kurtsiefer,et al.  Experimental observation of four-photon entanglement from parametric down-conversion. , 2003, Physical review letters.

[9]  L J Wang,et al.  Generation of correlated photon pairs in a microstructure fiber. , 2005, Optics letters.

[10]  J. Chen Two-photon-state generation via four-wave mixing in optical fibers (9 pages) , 2005 .

[11]  R. Leonhardt,et al.  Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability. , 2005, Optics express.

[12]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[13]  J. Rarity,et al.  High brightness single mode source of correlated photon pairs using a photonic crystal fiber. , 2005, Optics express.

[14]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[15]  Guided wave technology for a telecom wavelength heralded single photon source , 2004 .

[16]  J. Sharping,et al.  All-fiber photon-pair source for practical quantum communications , 2002 .

[17]  J. Rarity,et al.  Single mode source of correlated photon pairs from photonic crystal fibre , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[18]  D. A. Kleinman,et al.  Theory of Optical Parametric Noise , 1968 .

[19]  N. Gisin,et al.  PPLN waveguide for quantum communication , 2001, quant-ph/0107125.

[20]  Kyo Inoue,et al.  Generation of polarization-entangled photon pairs and violation of Bell's inequality using spontaneous four-wave mixing in a fiber loop , 2004 .

[21]  Shih,et al.  New high-intensity source of polarization-entangled photon pairs. , 1995, Physical review letters.

[22]  J G Rarity,et al.  Quantum communications and beyond , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[23]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[24]  I. Walmsley,et al.  Spectral information and distinguishability in type-II down-conversion with a broadband pump , 1997 .

[25]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[26]  N. Gisin,et al.  Highly efficient photon-pair source using periodically poled lithium niobate waveguide , 2000 .

[27]  N. Gisin,et al.  Long-distance teleportation of qubits at telecommunication wavelengths , 2003, Nature.

[28]  E. Pike,et al.  Optimal coupling of entangled photons into single-mode optical fibers. , 2004, Optics express.

[29]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[30]  Christian Kurtsiefer,et al.  High efficiency entangled photon pair collection in type II parametric fluorescence , 2001, quant-ph/0101074.

[31]  John G. Rarity,et al.  OBSERVATION OF SUB-POISSONIAN LIGHT IN PARAMETRIC DOWNCONVERSION , 1987 .

[32]  D B Ostrowsky,et al.  High-performance guided-wave asynchronous heralded single-photon source. , 2005, Optics letters.

[33]  J. Arriaga,et al.  Anomalous dispersion in photonic crystal fiber , 2000, IEEE Photonics Technology Letters.

[34]  J. G. Rarity,et al.  Interference of Single Photons from Separate Sources a , 1995 .

[35]  C. Hong,et al.  Generation of correlated photons via four-wave mixing in optical fibres , 2000, QELS 2000.

[36]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[37]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[38]  Peter G. Kazansky,et al.  Parametric fluorescence in periodically poled silica fibers , 1999 .

[39]  Jeremie Fulconis,et al.  Photonic crystal fiber source of correlated photon pairs. , 2005 .

[40]  Jun Chen,et al.  Quantum-correlated twin photons from microstructure fiber. , 2004, Optics express.

[41]  P. Russell,et al.  Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres. , 2004, Optics express.

[42]  P. Kumar,et al.  All-fiber photon-pair source for quantum communications , 2002, IEEE Photonics Technology Letters.