The (non-)Gibbsian nature of states invariant under stochastic transformations
暂无分享,去创建一个
[1] Roelof Kuik,et al. From PCA's to equilibrium systems and back , 1989 .
[2] T. Liggett. Interacting Particle Systems , 1985 .
[3] H. Künsch,et al. Non reversible stationary measures for infinite interacting particle systems , 1984 .
[4] Garrido,et al. Effective Hamiltonian description of nonequilibrium spin systems. , 1989, Physical review letters.
[5] N. B. Vasilyev. Bernoulli and Markov stationary measures in discrete local interactions , 1978 .
[6] W. Sullivan. Potentials for almost Markovian random fields , 1973 .
[7] The interaction potential of the stationary measure of a high‐noise spinflip process , 1993 .
[8] M. Zahradník,et al. ON ENTROPIC REPULSION IN LOW TEMPERATURE ISING MODELS , 1993 .
[9] R. Schonmann. Projections of Gibbs measures may be non-Gibbsian , 1989 .
[10] J. Lebowitz,et al. Statistical mechanics of probabilistic cellular automata , 1990 .
[11] R. Holley,et al. Free energy in a Markovian model of a lattice spin system , 1971 .
[12] R. Kuik,et al. Entropy and global Markov properties , 1990 .
[13] Hans-Otto Georgii,et al. Gibbs Measures and Phase Transitions , 1988 .
[14] Roberto H. Schonmann,et al. Pseudo-free energies and large deviations for non gibbsian FKG measures , 1988 .
[15] Senya Shlosman,et al. When is an interacting particle system ergodic? , 1993 .
[16] A. Sokal,et al. Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory , 1991, hep-lat/9210032.
[17] Defining relative energies for the projected ising measure , 1992 .
[18] Grinstein,et al. Statistical mechanics of probabilistic cellular automata. , 1985, Physical review letters.