Thermodynamic admissibility of the extended Pom-Pom model for branched polymers

The thermodynamic consistency of the eXtended Pom-Pom (XPP) model for branched polymers of Verbeeten et al. [W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model, J. Rheol. 45 (4) (2001) 823–843; W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations for polymer melts: the extended pom-pom model (vol 45, pg 823–843, 2001), J. Rheol. 45 (6) (2001) 1489] as well as its modified version [J. van Meerveld, Note on the thermodynamic consistency of the integral pom-pom model, J. Non-Newtonian Fluid Mech. 108 (1–3) (2002) 291–299] is investigated from the perspective of non-equilibrium thermodynamics, namely the General Equation for Non-Equilibrium Reversible–Irreversible Coupling (GENERIC) framework. The thermodynamic admissibility of the XPP model is shown for both its original and modified form. According to the GENERIC formalism, the parameter α introduced by Verbeeten et al. to predict non-zero second normal stress in shear flows must fulfill the condition 0 ≤ α ≤ 1.

[1]  H. Meijer,et al.  Stress Induced Crystallization in Elongational Flow , 2003 .

[2]  J. P. Aguayo,et al.  Extensional response of the pom-pom model through planar contraction flows for branched polymer melts , 2006 .

[3]  H. Ch. Öttinger,et al.  Beyond Equilibrium Thermodynamics , 2005 .

[4]  R. Larson,et al.  Molecular constitutive equations for a class of branched polymers: The pom-pom polymer , 1998 .

[5]  J. Guillet,et al.  Three-dimensional numerical simulation of viscoelastic contraction flows using the Pom-Pom differential constitutive model , 2005 .

[6]  F. Baaijens,et al.  Viscoelastic analysis of complex polymer melt flows using the extended Pom-Pom model , 2002 .

[7]  F. Baaijens,et al.  Numerical simulations of the planar contraction flow for a polyethylene melt using the XPP model , 2004 .

[8]  T. Phillips,et al.  Efficient and stable spectral element methods for predicting the flow of an XPP fluid past a cylinder , 2005 .

[9]  Martin Zatloukal,et al.  Differential viscoelastic constitutive equations for polymer melts in steady shear and elongational flows , 2003 .

[10]  J. V. Meerveld Note on the thermodynamic consistency of the integral pom–pom model , 2002 .

[11]  T. Phillips,et al.  The prediction of complex flows of polymer melts using spectral elements , 2004 .

[12]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[13]  Bamin Khomami,et al.  The influence of polymer concentration and chain architecture on free surface displacement flows of polymeric fluids , 2005 .

[14]  Anne M Grillet,et al.  Stability analysis of polymer shear flows using the extended Pom-Pom constitutive equations , 2002 .

[15]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[16]  P. Filip,et al.  On the predictive/fitting capabilities of the advanced differential constitutive equations for branched LDPE melts , 2006 .

[17]  Wmh Wilco Verbeeten Computational polymer melt rheology , 2001 .

[18]  Hans Christian Öttinger,et al.  General projection operator formalism for the dynamics and thermodynamics of complex fluids , 1998 .

[19]  F. Baaijens,et al.  Differential constitutive equations for polymer melts: The extended Pom–Pom model , 2001 .

[20]  R. Rutgers,et al.  Polyethylene flow prediction with a differential multi-mode Pom Pom model , 2001 .

[21]  R. Larson Constitutive equations for polymer melts and solutions , 1988 .

[22]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[23]  A. Sunarso,et al.  Numerical Analysis of Elongation Behavior of Melt Flow in Contraction Channels with Cylindrical Barriers , 2005 .